首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1319篇
  免费   45篇
  国内免费   4篇
  2022年   1篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   5篇
  2016年   32篇
  2015年   34篇
  2014年   48篇
  2013年   107篇
  2012年   87篇
  2011年   107篇
  2010年   58篇
  2009年   47篇
  2008年   80篇
  2007年   82篇
  2006年   107篇
  2005年   86篇
  2004年   97篇
  2003年   93篇
  2002年   78篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   17篇
  1997年   23篇
  1996年   14篇
  1995年   13篇
  1994年   16篇
  1993年   12篇
  1992年   10篇
  1991年   7篇
  1990年   2篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有1368条查询结果,搜索用时 140 毫秒
91.
Abscisic acid (ABA) is a phytohormone that plays a key role as a stress signal, regulating water relations during drought conditions, by inducing stomatal closure. However, to date, no putative ABA receptor(s) has been reported at the protein sequence, gene family, or cellular localization levels. We used biotinylated ABA (bioABA) to characterize the ABA-perception sites in the stomatal guard cells of Vicia faba. Treatment with bioABA induced stomatal closure and shrinkage of guard cell protoplasts (GCPs). The ABA-perception sites were visualized by fluorescence microscopy and confocal laser scanning microscopy (CLSM), using bioABA and fluorescence-labeled avidin. Fluorescent particles were observed in patches on the surface of the GCPs. Fluorescence intensity was quantified by flow cytometry (FCM) as well as by CLSM. Binding of bioABA was inhibited by ABA in a dose-dependent manner. Pre-treatment of GCPs with proteinase K also blocked the binding of bioABA. Binding of bioABA was inhibited by RCA-7a, an ABA analog that induces stomatal closure, but not by RCA-16, which has no effect on stomatal aperture. Another ABA analog, PBI-51, inhibited ABA-induced stomatal closure. This ABA antagonist also inhibited binding of bioABA to the GCPs. These results suggest that ABA is perceived on the plasma membrane of stomatal guard cells, and that the present experimental methods constitute valuable tools for characterizing the nature of the ABA receptor(s) that perceives physiological ABA signals. These imaging studies allow us to demonstrate the spatial distribution of the ABA-perception sites. Visualization of the ABA-perception sites provides new insights into the nature of membrane-associated ABA receptor(s).  相似文献   
92.
Methods for the preparation of an Escherichia coli tRNA mixture lacking one or a few specific tRNA species can be the basis for future applications of cell-free protein synthesis. We demonstrate here that virtually a single tRNA species in a crude E. coli tRNA mixture can be knocked out by an antisense (complementary) oligodeoxyribonucleotide. One out of five oligomers complementary to tRNAAsp blocked the aspartylation almost completely, while minimally affecting the aminoacylation with other 13 amino acids tested. This `knockout' tRNA behaved similarly to the untreated tRNA in a cell-free translation of an mRNA lacking Asp codons.  相似文献   
93.
94.
Background/PurposeLysine-specific gingipain (Kgp) is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis), a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F). We investigated the release of K6F and its induction of cytokine secretion.MethodsK6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay.ResultsWe identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359–378), in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt.ConclusionKgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on release, induces invasion and cytokine secretion by human gingival fibroblasts. Thus, Kgp may contribute to the development of periodontal disease.  相似文献   
95.
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages constitute viral infection in plants. First, the virus multiplies in initially infected cells or organs after viral transmission and then the virus subsequently spreads systemically through the vasculature to distal plant tissues or organs. Thus, antiviral silencing in plants must cope with both local and systemic invasion of viruses. In a recent study using 2 sets of different experiments, we clearly demonstrated the differential requirement for Dicer-like 4 (DCL4) and DCL2 proteins in the inhibition of intracellular and systemic infection by potato virus X in Arabidopsis thaliana. Taken together with the results of other studies, here we further discuss the functional specificity of DCL proteins in the antiviral silencing pathway.  相似文献   
96.
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.  相似文献   
97.
Gaucher’s disease is caused by defects in acid β-glucosidase 1 (GBA1) and has been also proposed as an inflammatory disease. GBA1 cleaves glucosylceramide to form ceramide, an established bioactive lipid, and defects in GBA1 lead to aberrant accumulation in glucosylceramide and insufficient formation of ceramide. We investigated if the pro-inflammatory kinase p38 is activated in Gaucher’s disease, since ceramide has been proposed to suppress p38 activation. Three Gaucher’s disease mouse models were employed, and p38 was found to be activated in lung and liver tissues of all Gaucher’s disease mice. Most interestingly, neuronopathic Gaucher’s disease type mice, but not non-neuronopathic ones, displayed significant activation of p38 and up-regulation of p38-inducible proinflammatory cytokines in brain tissues. In addition, all type of Gaucher’s disease mice also showed increases in serum IL-6. As cellular signalling is believed to represent an in vivo inflammatory phenotype in Gaucher’s disease, activation of p38 and possibly its-associated formation of proinflammatory cytokines were assessed in fibroblasts established from neuronopathic Gaucher’s disease mice. In mouse Gaucher’s disease cells, p38 activation and IL-6 formation by TNF-α treatment were enhanced as compared to those of wild type. Furthermore, human fibroblasts from Gaucher’s disease patients also displayed increases in p38 activation and IL-6 formation as comparison to healthy counterpart. These results raise the potential that proinflammatory responses such as p38 activation and IL-6 formation are augmented in Gaucher’s disease.  相似文献   
98.

Background

Seizure is a common complication after stroke (termed “post-stroke seizure,” PSS). Although many studies have assessed outcomes and risk factors of PSS, no reliable predictors are currently available to determine PSS recurrence. We compared baseline clinical characteristics and post-stroke treatment regimens between recurrent and non-recurrent PSS patients to identify factors predictive of recurrence.

Methods

Consecutive PSS patients admitted to our stroke center between January 2011 and July 2013 were monitored until February 2014 (median 357 days; IQR, 160–552) and retrospectively evaluated for baseline clinical characteristics and PSS recurrence. Cumulative recurrence rates at 90, 180, and 360 days post-stroke were estimated by Kaplan—Meier analysis. Independent predictors of recurrent PSS were identified by Cox proportional-hazards analysis.

Results

A total of 104 patients (71 men; mean age, 72.1 ± 11.2 years) were analyzed. PSS recurred in 31 patients (30%) during the follow-up. Factors significantly associated with PSS recurrence by log-rank analysis included previous PSS, valproic acid (VPA) monotherapy, polytherapy with antiepileptic drugs (AEDs), frontal cortical lesion, and higher modified Rankin Scale score at discharge (all p < 0.05). Independent predictors of recurrent PSS were age <74 years (HR 2.38, 95% CI 1.02–5.90), VPA monotherapy (HR 3.86, 95% CI 1.30–12.62), and convulsions on admission (HR 3.87, 95% CI 1.35–12.76).

Conclusions

Approximately one-third of PSS patients experienced seizure recurrence within one year. The predictors of recurrent PSS were younger age, presence of convulsions and VPA monotherapy. Our findings should be interpreted cautiously in countries where monotherapy with second-generation AEDs has been approved because this study was conducted while second-generation AEDs had not been officially approved for monotherapy in Japan.  相似文献   
99.
Epithelial–mesenchymal transition (EMT) is associated with pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF). In this study, we investigated EMT of human pulmonary epithelial-derived cells (A549). A549 cells was either cultured by itself or co-cultured with THP-1 macrophages under normoxic (21% O2) and hypoxic (2% O2) conditions. We evaluated the presence of EMT by determining the expression of EMT markers, E-cadherin, vimentin, and fibronectin. To determine the role of TGF-β1 and IL-1β in EMT of the A549 cells, we analyzed the effects of blocking their activity with TGF-β1 inhibitor or IL-1β neutralizing antibody respectively. The A549 cells presented EMT when they were co-cultured with THP-1 macrophages. The EMT of the A549 cells co-cultured with THP-1 macrophages was exacerbated under hypoxia. In addition, the EMT were prevented by the addition of TGF-β1 type I receptor kinase inhibitor. The hypoxic condition increased the mRNA levels of TGF-β1 in A549 cells and THP-1 macrophages and that of IL-1β in THP-1 macrophages when each cells were co-cultured. Anti-IL-1β neutralizing antibody attenuated TGF-β1 secretion in co-culture media under hypoxic conditions. Thus, the IL-1β from THP-1 macrophages up-regulated the TGF-β1 from A549 cells and THP-1 macrophages, and then the TGF-β1 from both cells induced and promoted the EMT of A549 cells when they were co-cultured under hypoxia. Together, these results demonstrate that the interaction between type II pneumocytes and macrophages under hypoxia is necessary for the development of pulmonary fibrosis.  相似文献   
100.
Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号