首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1319篇
  免费   45篇
  国内免费   4篇
  1368篇
  2022年   1篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   5篇
  2016年   32篇
  2015年   34篇
  2014年   48篇
  2013年   107篇
  2012年   87篇
  2011年   107篇
  2010年   58篇
  2009年   47篇
  2008年   80篇
  2007年   82篇
  2006年   107篇
  2005年   86篇
  2004年   97篇
  2003年   93篇
  2002年   78篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   17篇
  1997年   23篇
  1996年   14篇
  1995年   13篇
  1994年   16篇
  1993年   12篇
  1992年   10篇
  1991年   7篇
  1990年   2篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有1368条查询结果,搜索用时 0 毫秒
11.
To determine whether lipid-secreting cells have cytosolic Ca2+ concentration ([Ca2+]c)-related secretory mechanisms, morphological changes and intracellular calcium dynamics of Harderian glands of guinea pigs stimulated by secretagogs were studied by electron microspy and Fura-2/AM digital image analysis. Control glandular cells contained large lipid vacuoles that were bordered by multi-layered membranes. Rough-surfaced endoplasmic reticulum, mitochondria, and smooth-surfaced endoplasmic reticulum may be involved in lipid vacuole formation. Myoepithelial cells surrounded alveoli. After carbamylcholine (CCh, 10–6, 10–5, and 10–3 M) stimulation, lipid materials within the membranous structures were frequently discharged by an exocytotic mechanism. Conspicuous deformation of glandular cells caused by vigorous contraction of myoepithelial cells was observed in isolated alveoli after 10–6M CCh stimulation, whereas the deformaties of glandular tissues perfused via vessels were small even after 10–3M CCh stimulation. Connective tissue between glandular alveoli inhibited unbridled myoepithelial-cell contraction. Fura-2/AM digital imaging analysis revealed that CCh stimulation caused an increase in [Ca2+]c in isolated alveoli. The morphological reactions and changes in [Ca2+]c were prevented by atropine. When extracellular calcium ions were absent, enhanced extrusion of lipid vacuoles, myoepithelial-cell contraction, and a rise in [Ca2+]c after CCh stimulation were not observed. Nicotine and catecholamines had no effect on the secretion or on the dynamics of [Ca2+]c. It can be concluded that acetylcholine elicits exocytosis in glandular cells and contraction of the myoepithelial cells of Harderian glands, accompanied by an increase in [Ca2+]c. The dynamics of [Ca2+]c of the gland alveoli are mostly dependent on extracellular Ca2+.  相似文献   
12.
Exogenously applied abscisic acid (ABA) substantially suppressed the elongation of hypocotyl segments of etiolated squash ( Cucurbita maxima Duch. cv. Houkou-Aokawaamaguri) after a 3 h lag period, without changes in the osmolalities of the apoplastic and symplastic solutions in the segment.
Segments with the outer tissues removed elongated more rapidly than unpeeled segments (whole segments). ABA did not suppress the elongation of peeled segments. When the segments were incubated in [14C]-glucose, radioactivity was more effectively incorporated into the cell wall fractions of the outer than into those of the inner tissue. ABA significantly inhibited the incorporation of radioactivity into hermicellulose and cellulose of the outer tissue prior to the suppression of segment elongation, but it did not inhibit the incorporation into the pectic traction of the outer tissue or into any of the cell wall fractions of the inner tissue. These results indicate that ABA primarily affected the outer tissue, in which it specifically reduced the synthesis of hemicellulose and cellulose prior to the ABA-mediated suppression of growth.  相似文献   
13.
The involvement of anti-gravitational polysaccharides in gravity resistance, one of two major gravity responses in plants, was discussed. In dicotyledons, xyloglucans are the only cell wall polysaccharides, whose level, molecular size, and metabolic turnover were modified under both hypergravity and microgravity conditions, suggesting that xyloglucans act as anti-gravitational polysaccharides. In monocotyledonous Poaceae, (1-->3),(1-->4)-beta glucans, instead of xyloglucans, were shown to play a role as anti-gravitational polysaccharides. These polysaccharides are also involved in plant responses to other environmental factors, such as light and temperature, and to some phytohormones, such as auxin and ethylene. Thus, the type of anti-gravitational polysaccharides is different between dicotyledons and Poaceae, but such polysaccharides are universally involved in plant responses to environmental and hormonal signals. In gravity resistance, the gravity signal may be received by the plasma membrane mechanoreceptors, transformed and transduced within each cell, and then may modify the processes of synthesis and secretion of the anti-gravitational polysaccharides and the cell wall enzymes responsible for their degradation, as well as the apoplastic pH, leading to the cell wall reinforcement. A series of events inducing gravity resistance are quite independent of those leading to gravitropism.  相似文献   
14.
15.
The expression of heparan sulfate glycosaminoglycan (HS-GAG) was examined in Xenopus embryos during the developmental stages. Chemical analysis showed the existence of HS-GAG in the 35S-labeled embryos. By western blot analysis using a specific anti-HS monoclonal antibody, HS-GAG related epitope was found after the neurulation on two protein bands, whose molecular weights were approximately 90 kDa and 100 kDa, respectively. Immunohistochemistry revealed that HS-GAG occurred exclusively in the animal hemisphere in early gastrulae, and then appeared predominantly on the sheath of the neural tube, the notochord and epithelium. To address whether HS-GAG chains contribute to Xenopus embryonic development, we eliminated the embryonic HS-GAG by injecting purified Flavobacterium heparitinases (HSase) into their blastocoels. Most of the injected embryos were aberrant in mesodermal and neural formation, and became acephalic. Histological examination showed that these embryos were completely devoid of the central nervous system and the mesodermal tissues. Neither heat-inactivated heparitinase nor chondroitinase showed such abnormality. The HS-GAG-eliminated embryos showed decreased expression of both muscular and neural-specific markers. These results suggest that HS-GAG plays an indispensable role in establishing the fundamental body plan during early Xenopus development.  相似文献   
16.
Summary Specificity of reception on 11 electrolytes in the slime moldPhysarum polycephalum was investigated in the presence of polyvalent cations in media. Membrane potential and motive force of tactic movement were examined with the aid of the double chamber method, and the zeta potential at the membrane surface of the slime mold was measured by electrophoretic mobility. The results obtained are summarized as follows: (1) The presence of polyvalent cations (e.g., Ca2+, Mg2+, Sr2+, Ba2+, La3+, Th4+) in medium led to an increase in threshold concentration,C th , determined from the potential measurements for Na- or Li-salts, and to a decrease inC th for K-, Rb-, or NH4-salts,C th for 11 electrolytes changed discontinuously when the concentration of polyvalent cations in medium exceeded their respective thresholds. (2) TheC th determined from chemotaxis agreed with that from the potential response both in the presence and absence of polyvalent cations. (3) Sequence of selectivity of univalent cations varied extensively in the presence of polyvalent cations. (4) Changes in the zeta potential induced by NaCl reception agreed with those in the membrane potential even in the presence of Ca2+ in medium. (5) TheC th for reception of NaCl changed sharply at about 12 °C in the presence of polyvalent cations, while that for KCl was independent of the temperature.Conformational changes in surface membrane of the slime mold in response to reception of polyvalent cations were then discussed in relation to the discrimination of univalent cations.  相似文献   
17.
We have established a procedure for converting porcine insulin into human insulin using a serine protease from Achromobacterlyticus M497-1 which shows unique specificity against lysine residues on the carboxyl side of the splitting point. Desalanine-(B30)-insulin (DAI) was prepared by digestion of porcine insulin with Achromobacter protease. The coupling between DAI and Thr-OBut was performed by the same enzyme at pH 6.5 with a large excess of the amine component (Thr-OBut) in the presence of high concentrations of organic co-solvents. The highest yield was 85% by 20 h reaction at 37°C. The synthesized [Thr-OBut-B30]-insulin was isolated, then deprotected with trifluoroacetic acid in the presence of anisole to obtain semisynthetic human insulin.  相似文献   
18.
Partially purified β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) from Bacillus circulans showed high activity towards both pure lactose and lactose in skim milk, and a better thermal stability than the enzyme from yeast or Escherichia coli. During the course of hydrolysis of lactose catalysed by the enzyme, considerable amounts of oligosaccharides were produced. β-d-Galactosidase from B. circulans was immobilized onto Duolite ES-762, Dowex MWA-1 and sintered alumina by adsorption with glutaraldehyde treatment. The highest activity for hydrolysis of lactose was obtained with immobilization onto Duolite ES-762. During a continuous hydrolysis of lactose, the immobilized enzyme was reversibly inactivated, probably due to oligosaccharides accumulating in the gel. The inactivation was reduced when a continuous reaction was operated at a high percent conversion of lactose in a continuous stirred tank reactor (CSTR). The half-life of the immobilized enzyme was estimated to be 50 and 15 days at 50 and 55°C, respectively, when the reaction was carried out in a CSTR with a percent conversion of lactose >70%.  相似文献   
19.
In the course of studying the secretory products of microglia, we detected protease activity in the conditioned medium. Various proteins (casein, histone, myelin basic protein, and extracellular matrix) were digested. The protease activity was characterized by using purified myelin basic protein as a substrate. Maximal activity was observed at neutral pH levels (7-8), which was different from the optimum pH level of proteolytic activity observed in the cell homogenate. The activity was inhibited approximately 60 and 50% by 1 mM phenylmethylsulfonyl fluoride and 40 microM elastatinal, respectively. In gel filtration, the major activity, which was inhibited in the presence of N-methoxysuccinyl-Ala-Ala-Pro-Val-methyl chloride, eluted at a position corresponding to a molecular mass of approximately 25 kDa. These results suggest that the major protease present in microglial conditioned medium is elastase or an elastase-like protease. This suggestion was confirmed by the finding that the 25-kDa protein band was stained with anti-elastase antiserum by western blotting. De novo synthesis of elastase in microglia was supported by [35S]methionine incorporation. In the presence of lipopolysaccharide, the secretory elastase decreased. These results demonstrate that microglia secrete proteases, one of which was identified as elastase. The significance of this enzyme production in physiological and pathological conditions is discussed.  相似文献   
20.
Temperature-jump NMR study of protein folding: Ribonuclease A at low pH   总被引:3,自引:0,他引:3  
Summary The kinetic process of folding of bovine pancreatic ribonuclease A in a2H2O environment at pH 1.2 was examined by a recently developed temperature-jump NMR method (Akasaka et al., (1990) Rev. Sci. Instrum.61, 66–68). Upon temperature-jump down from 45°C to 29°C, which was attained within 6 s, the proton NMR spectral changes were followed consecutively in time intervals of seconds. There was a rapid spectral change, which was finished within the jump period, followed by a much slower process which lasted for a minute or longer. Rates of the slower process were measured at different positions of the polypeptide chain as intensity changes of individual His and Tyr proton signals of the folded conformer and as intensity changes of aliphatic and His protons of the unfolded conformer. Most of these rates coincided with each other within experimental error with an average value of 2.8×10–2s–1. The result gave clear experimental evidence that the slow folding of RNase A at low pH is a cooperative process involving most regions of the molecule, not only thermodynamically, but kinetically as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号