首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1675篇
  免费   69篇
  国内免费   4篇
  1748篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   16篇
  2017年   7篇
  2016年   37篇
  2015年   41篇
  2014年   54篇
  2013年   116篇
  2012年   94篇
  2011年   119篇
  2010年   65篇
  2009年   53篇
  2008年   95篇
  2007年   92篇
  2006年   127篇
  2005年   97篇
  2004年   104篇
  2003年   108篇
  2002年   97篇
  2001年   28篇
  2000年   22篇
  1999年   16篇
  1998年   19篇
  1997年   26篇
  1996年   20篇
  1995年   21篇
  1994年   21篇
  1993年   18篇
  1992年   34篇
  1991年   25篇
  1990年   12篇
  1989年   16篇
  1988年   10篇
  1987年   11篇
  1986年   6篇
  1985年   6篇
  1984年   15篇
  1983年   9篇
  1982年   7篇
  1981年   14篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   5篇
  1974年   3篇
  1972年   3篇
  1963年   3篇
  1961年   2篇
排序方式: 共有1748条查询结果,搜索用时 15 毫秒
991.
992.
BACKGROUND: Although previous studies have reported important roles of CD4(+) type 1-helper T cells and regulatory T cells in Helicobacter-associated gastritis, the significance of CD8(+) cytotoxic T cells remains unknown. To study the roles of CD8(+) T cells, we examined the immune response in the gastric mucosa of Helicobacter felis-infected major histocompatibility complex (MHC) class II-deficient (II(-/-)) mice, which lack CD4(+) T cells. MATERIALS AND METHODS: Stomachs from H. felis-infected wild-type and infected MHC II(-/-) mice were examined histologically and immunohistochemically. Gastric acidity and serum levels of anti-H. felis antibodies were measured. The expression of pro-inflammatory and anti-inflammatory cytokine, Fas-ligand, perforin, and Foxp3 genes in the gastric mucosa was investigated. RESULTS: H. felis-infected MHC II(-/-) mice developed severe gastritis, accompanied by marked infiltration of CD8(+) cells. At 1 and 2 months after inoculation, mucosal inflammation and atrophy were more severe in MHC II(-/-) mice, although gastritis had reached similar advanced stages at 3 months after inoculation. There was little infiltration of CD4(+) cells, and no Foxp3-positive cells were detected in the gastric mucosa of the infected MHC II(-/-) mice. The expression of the interleukin-1beta and Fas-ligand genes was up regulated, but that of Foxp3 was down regulated in the infected MHC II(-/-) mice. Serum levels of anti-H. felis antibodies were lower in the infected MHC II(-/-) mice, despite severe gastritis. CONCLUSIONS: The present study suggests that cross-primed CD8(+) cytotoxic T cells can induce severe H.-associated gastritis in the absence of CD4(+) helper T cells and that Foxp3-positive cells may have an important role in the control of gastric inflammation.  相似文献   
993.
Since personal and verbal reporting of alcohol use is not necessarily accurate, objective markers to assess alcohol consumption are required. The currently available markers, however, are limited in sensitivity and specificity for screening of excessive alcohol drinkers. Therefore, searches for novel markers are warranted. Recently, surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) has been successfully used to detect disease-associated proteins in complex biological specimens. We used the ProteinChip SELDI technology to generate comparative protein profiles of the consecutive serum samples obtained during abstinence from a total of 16 chronic alcoholic patients hospitalized for a rehabilitation program. We recognized two peaks (5.9 and 7.8 kDa), both of which had been downregulated on admission, the expression level of which significantly increased after a one-week abstinence. These changes were also seen in nonresponders of gamma-glutamyltransferase. These two proteins were partially purified and subjected to amino acid sequencing. The 5.9 kDa protein was identified as a fragment of fibrinogen alphaE chain and the 7.8 kDa was a fragment of apoprotein A-II. These novel protein fragments may be promising biomarkers for excessive alcohol drinking.  相似文献   
994.
In order to elucidate the molecular mechanisms responsible for the apparent nonlinear behavior of the temperature dependence of the redox potential of Hydrogenobacter thermophilus cytochrome c552 [Takahashi, Y., Sasaki, H., Takayama, S. J., Mikami, S., Kawano, S., Mita, H., Sambongi, Y., and Yamamoto, Y. (2006) Biochemistry 45, 11005-11011], its heme active site structure has been characterized using variable-temperature and -pressure NMR techniques. The study revealed a temperature-dependent conformational transition between protein structures, which slightly differ in the conformation of the loop bearing the Fe-bound axial Met residue. The heme environment in the protein structure which arises at lower temperature was found to be more polar, as a result of the altered orientation of the loop with respect to the heme due to its conformational change, than that arising at higher temperature. The present study demonstrated the importance of the structural and dynamic properties of the polypeptide chain in close proximity to the heme for redox regulation of the protein.  相似文献   
995.
Human hyaluronidase-4 (hHYAL4), a member of the hyaluronidase family, has no hyaluronidase activity, but is a chondroitin sulfate (CS)-specific endo-β-N-acetylgalactosaminidase. The expression of hHYAL4 is not ubiquitous but restricted to placenta, skeletal muscle, and testis, suggesting that hHYAL4 is not involved in the systemic catabolism of CS, but rather has specific functions in particular organs or tissues. To elucidate the function of hyaluronidase-4 in vivo, mouse hyaluronidase-4 (mHyal4) was characterized. mHyal4 was also demonstrated to be a CS-specific endo-β-N-acetylgalactosaminidase. However, mHyal4 and hHYAL4 differed in the sulfate groups they recognized. Although hHYAL4 strongly preferred GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)-containing sequences typical in CS-D, where GlcUA represents d-glucuronic acid, mHyal4 depolymerized various CS isoforms to a similar extent, suggesting broad substrate specificity. To identify the amino acid residues responsible for this difference, a series of human/mouse HYAL4 chimeric proteins and HYAL4 point mutants were generated, and their preference for substrates was investigated. A combination of the amino acid residues at 261–265 and glutamine at 305 was demonstrated to be essential for the enzymatic activity as well as substrate specificity of mHyal4.  相似文献   
996.
To identify proteins that could be molecular targets for diagnosis and treatment of hepatitis C virus-related hepatocellular carcinoma (HCV-related HCC), we used a proteomic approach to analyze protein expression in samples of human liver. Twenty-six pairs of tumorous and corresponding nontumorous liver samples from patients with HCV-related HCC and six normal liver samples were analyzed by two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry. One of the numerous spots that showed stronger intensity in tumorous than in nontumorous samples was identified as alpha enolase, a key enzyme in the glycolytic pathway. Expression of this protein increased with tumor dedifferentiation and was significantly higher in poorly differentiated HCC than in well-differentiated HCC. This pattern was reproduced by immunoblot analysis and immunohistochemistry. Expression of alpha enolase also correlated positively with tumor size and venous invasion. These results suggest that alpha enolase is one of the candidates for biomarkers for tumor progression that deserves further investigation in HCV-related HCC.  相似文献   
997.
A polymorphic microsatellite locus was isolated and characterized from Polybia paulista, one of the most common polygynic, swarm‐founding social wasps in Brazil. Three other microsatellite loci for which the primer sets were originally developed in independent‐founding paper wasps also showed polymorphism in the size of amplification products in P. paulista.  相似文献   
998.
Okuda T  Okuda K  Kokubu E  Kawana T  Saito A  Ishihara K 《Anaerobe》2012,18(1):157-161
The formation of dental plaque biofilm by specific Gram-negative rods and spirochetes plays an important role in the development of periodontal disease. The aim of this study was to characterize biofilm formation by Fusobacterium nucleatum and Capnocytophaga ochracea. Coaggregation between F. nucleatum and Capnocytophaga species was determined by visual assay. Biofilm formation was assessed by crystal violet staining. Enhancement of biofilm formation by F. nucleatum via soluble factor of C. ochracea was evaluated by addition of culture supernatant and a two-compartment separated co-culture system. Production of autoinducer-2 by the tested organisms was evaluated using Vibrio harveyi BB170. F. nucleatum strains coaggregated with C. ochracea ATCC 33596 or ONO-26 strains. Ethylenediamine tetraacetic acid, N-acetyl-d-galactosamine or lysine inhibited coaggregation. Heating or proteinase K treatment of F. nucleatum cells affected coaggregation, whereas the same treatment of C. ochracea cells did not. Co-culture of F. nucleatum with C. ochracea in the same well resulted in a statistically significant increase in biofilm formation. Enhancement of F. nucleatum biofilm formation by a soluble component of C. ochracea was observed using the two-compartment co-culture system (P < 0.05) and confirmed by addition of culture supernatant of C. ochracea (P < 0.01). The present findings indicate that induction of coaggregation and intracellular interaction by release of a diffusible molecule by C. ochracea play a significant role in the formation of biofilm by F. nucleatum and C. ochracea.  相似文献   
999.
Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-regulated kinase (ERK) activation. In addition, SMS1/SMS2 double-knockout cells had heightened sensitivity to CXCL12, which was significantly suppressed upon transfection with the SMS1 or SMS2 gene or when they were treated with exogenous sphingomyelin but not when they were treated with the SMS substrate ceramide. Notably, SMS deficiency facilitated relocalization of CXCR4 to lipid rafts, which form platforms for the regulation and transduction of receptor-mediated signaling. Furthermore, we found that SMS deficiency potentiated CXCR4 dimerization, which is required for signal transduction. This dimerization was significantly repressed by sphingomyelin treatment. Collectively, our data indicate that SMS-derived sphingomyelin lowers responsiveness to CXCL12, thereby reducing migration induced by this chemokine. Our findings provide the first direct evidence for an involvement of SMS-generated sphingomyelin in the regulation of cell migration.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号