首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2199篇
  免费   135篇
  国内免费   4篇
  2338篇
  2021年   12篇
  2020年   9篇
  2019年   9篇
  2018年   20篇
  2017年   10篇
  2016年   42篇
  2015年   54篇
  2014年   69篇
  2013年   139篇
  2012年   122篇
  2011年   139篇
  2010年   76篇
  2009年   71篇
  2008年   115篇
  2007年   131篇
  2006年   154篇
  2005年   127篇
  2004年   140篇
  2003年   131篇
  2002年   116篇
  2001年   47篇
  2000年   55篇
  1999年   51篇
  1998年   29篇
  1997年   36篇
  1996年   23篇
  1995年   22篇
  1994年   25篇
  1993年   18篇
  1992年   38篇
  1991年   31篇
  1990年   28篇
  1989年   32篇
  1988年   34篇
  1987年   13篇
  1986年   20篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1982年   11篇
  1981年   9篇
  1980年   11篇
  1979年   13篇
  1978年   8篇
  1977年   10篇
  1975年   5篇
  1974年   9篇
  1973年   6篇
  1970年   6篇
  1966年   4篇
排序方式: 共有2338条查询结果,搜索用时 15 毫秒
71.
A new multifunctional protein kinase, which normally exists as an inactive form in the soluble fraction in mammalian tissues, attaches to membranes to exhibit full enzymatic activity. A low concentration of Ca2+ is absolutely necessary for this activation. This process is reversible. cAMP shows no effect. The active factors in membranes are phosphatidylinositol, phosphatidylserine, phosphatidic acid, diphosphatidylglycerol, and phosphatidylethanolamine in that order. Phosphatidylcholine and sphingomyelin are far less effective. Cytoplasmic as well as other membrane fractions from various tissues are active in supporting the enzymatic activity. A possible role of this Ca2+ and phospholipid-activated protein kinase system in transmembrane control is proposed.  相似文献   
72.
73.
Evidence is accumulating that rho p21, a ras p21-related small GTP-binding protein (G protein), regulates the actomyosin system. The actomyosin system is known to be essential for cell motility. In the present study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein (named rho GDI), its stimulatory GDP/GTP exchange protein (named smg GDS), and Clostridium botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in cell motility (chemokinesis) of Swiss 3T3 cells. We quantitated the capacity of cell motility by measuring cell tracks by phagokinesis. Microinjection of the GTP gamma S-bound active form of rhoA p21 or smg GDS into Swiss 3T3 cells did not affect cell motility, but microinjection of rho GDI into the cells did inhibit cell motility. This rho GDI action was prevented by comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 but not with the same form of rhoA p21 lacking the C-terminal three amino acids which was not posttranslationally modified with lipids. The rho GDI action was not prevented by Ki-rasVal-12 p21 or any of the GTP gamma S-bound form of other small GTP-binding proteins including rac1 p21, G25K, and smg p21B. Among these small G proteins, rhoA p21, rac1 p21, and G25K are known to be substrates for rho GDI. The rho GDI action was not prevented by comicroinjection of rho GDI with smg GDS. Microinjection of C3 into Swiss 3T3 cells also inhibited cell motility. These results indicate that the rho GDI-rho p21 system regulates cell motility, presumably through the actomyosin system.  相似文献   
74.
75.
Cathepsins K and L are cysteine proteinases which are considered to play an important role in bone resorption. Type I collagen is the most abundant component of the extracellular matrix of bone and regarded as an endogenous substrate for the cysteine proteinases in osteoclastic bone resorption. We have synthesized a fragment of Type I collagen (alpha-1) (157-192) as a substrate for the cathepsins and found that cathepsins K and L cleave the fragment at different specific sites. The major cleavage sites for cathepsin K were Met159-Gly160, Ser162-Gly163 and Arg165-Gly166, while those for cathepsin L were Gly166-Leu167 and Gln180-Gly181. The structure of the fragment was analyzed in aqueous solution by circular dichroism and proton NMR spectroscopy and the difference in the molecular recognition of collagen by cathepsins K and L was discussed from the structural aspect.  相似文献   
76.
77.
A new algorithm was developed for the estimation of the metabolic flux distribution based on GC-MS data of proteinogenic amino acids. By using a sensitive GC-MS protocol as well as by combining the global search algorithm such as the genetic algorithm with the local search algorithm such as the Levenberg-Marquardt algorithm, not only the distribution of the net fluxes in the entire network, but also certain exchange fluxes which contribute significantly to the isotopomer distribution could be quantified. This mass isotopomer analysis could identify the biochemical changes involved in the regulation where acetate or glucose was used as a main carbon source. The metabolic flux analysis clearly revealed that when the specific growth rate increased, only a slight change in flux distribution was observed for acetate metabolism, indicating that subtle regulation mechanism exists in certain key junctions of this network system. Different from acetate metabolism, when glucose was used as a carbon source, as the growth rate increased, a significant increase in relative pentose phosphate pathway (PPP) flux was observed for Escherichia coli K12 at the expense of the citric acid cycle, suggesting that when growing on glucose, the flux catalyzed by isocitrate dehydrogenase could not fully fulfill the NADPH demand for cell growth, causing the oxidative PPP to be utilized to a larger extent so as to complement the NADPH demand. The GC-MS protocol as well as the new algorithm demonstrated here proved to be a powerful tool for characterizing metabolic regulation and can be utilized for strain improvement and bioprocess optimization.  相似文献   
78.
We recently purified to near homogeneity a novel type of regulatory protein for smg p25A, a ras p21-like GTP-binding protein, from bovine brain cytosol. This regulatory protein, named smg p25A GDP dissociation inhibitor (GDI), regulates the GDP-GTP exchange reaction of smg p25A by inhibiting dissociation of GDP from and subsequent binding of GTP to it. In the present studies, we isolated and sequenced the cDNA of smg p25A GDI from a bovine brain cDNA library by using an oligonucleotide probe designed from the partial amino acid sequence of purified smg p25A GDI. The cDNA has an open reading frame that encodes a protein of 447 amino acids with a calculated Mr of 50,565. This Mr is similar to those of the purified smg p25A GDI estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sucrose density gradient ultracentrifugation, which are about 54,000 and 65,000, respectively. The isolated cDNA is expressed in Escherichia coli, and the encoded protein exhibits GDI activity. smg p25A GDI is hydrophilic overall, except for one hydrophobic region near the N terminus. smg p25A GDI shares low amino acid sequence homology with the Saccharomyces cerevisiae CDC25-encoded protein, which has been suggested to serve as a factor that regulates the GDP-GTP exchange reaction of the yeast RAS2-encoded protein, but not with the beta gamma subunits of GTP-binding proteins having an alpha beta gamma subunit structure, such as Gs and Gi. The smg p25A GDI mRNA was present in various tissues, including not only tissues in which smg p25A was detectable but also tissues in which it was not detectable. This fact has raised the possibility that smg p25A GDI interacts with another G protein in tissues in which smg p25A is absent.  相似文献   
79.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   
80.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and 7 susceptibility loci originally identified by European genome-wide association study (GWAS) in 2012: ZMIZ1, KLHDC5, TLE1, ANKRD55, CILP2, MC4R, and BCAR1. We also examined the association of 3 additional loci: CCND2 and GIPR, identified in sex-differentiated analyses, and LAMA1, which was shown to be associated with non-obese European type 2 diabetes.MethodsWe genotyped 6,972 Japanese participants (4,280 type 2 diabetes patients and 2,692 controls) for each of the 10 single nucleotide polymorphisms (SNPs): rs12571751 in ZMIZ1, rs10842994 near KLHDC5, rs2796441 near TLE1, rs459193 near ANKRD55, rs10401969 in CILP2, rs12970134 near MC4R, rs7202877 near BCAR1, rs11063069 near CCND2, rs8108269 near GIPR, and rs8090011 in LAMA1 using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using a logistic regression analysis.ResultsAll SNPs examined in this study had the same direction of effect (odds ratio > 1.0, p = 9.77 × 10-4, binomial test), as in the original reports. Among them, rs12571751 in ZMIZ1 was significantly associated with type 2 diabetes [p = 0.0041, odds ratio = 1.123, 95% confidence interval 1.037–1.215, adjusted for sex, age and body mass index (BMI)], but we did not observe significant association of the remaining 9 SNP loci with type 2 diabetes in the present Japanese population (p ≥ 0.005). A genetic risk score, constructed from the sum of risk alleles for the 7 SNP loci identified by un-stratified analyses in the European GWAS meta-analysis were associated with type 2 diabetes in the present Japanese population (p = 2.3 × 10-4, adjusted for sex, age and BMI).ConclusionsZMIZ1 locus has a significant effect on conferring susceptibility to type 2 diabetes also in the Japanese population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号