首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   89篇
  国内免费   4篇
  1879篇
  2022年   3篇
  2021年   16篇
  2020年   8篇
  2019年   10篇
  2018年   18篇
  2017年   13篇
  2016年   45篇
  2015年   46篇
  2014年   57篇
  2013年   130篇
  2012年   108篇
  2011年   125篇
  2010年   70篇
  2009年   68篇
  2008年   103篇
  2007年   114篇
  2006年   138篇
  2005年   111篇
  2004年   130篇
  2003年   109篇
  2002年   106篇
  2001年   22篇
  2000年   24篇
  1999年   16篇
  1998年   18篇
  1997年   25篇
  1996年   22篇
  1995年   20篇
  1994年   25篇
  1993年   14篇
  1992年   15篇
  1991年   17篇
  1990年   16篇
  1989年   19篇
  1988年   8篇
  1987年   10篇
  1986年   11篇
  1985年   10篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1970年   3篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有1879条查询结果,搜索用时 15 毫秒
41.
We report the expression of a high level of human cyclooxygenase-1 (hCOX-1) in mammalian cells using a novel gene amplification method known as the IR/MAR gene amplification system. IR/MAR-plasmids contain a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) and amplify autonomously without a specific induction process. In this study, the IR/MAR-plasmid pΔBN.AR1 was cotransfected with pCAG-COX1, which expresses hCOX-1, into human HEK293T cells, and G418 and blasticidin S double-resistant cells were obtained in about 1month. Real-time PCR and Western blotting revealed that the expressions of hCOX-1 mRNA and protein in both polyclonal and monoclonal cells were remarkably higher than those in only pCAG-COX1-transfected control cells. Southern blotting demonstrated the amplification of the hCOX-1 gene, and the copy number of clone #43 obtained by the cotransfection of pΔBN.AR1 and pCAG-COX1 was more than 20 copies per cell, though that of clone #14 obtained without using the IR/MAR plasmid pΔBN.AR1 was only two copies. These results indicate that a high level of hCOX-1 expression was achieved as a result of hCOX-1 gene amplification. Furthermore, the crude extract from clone #43 showed a strong COX-1 activity, and the activity was inhibited by the representative COX-1 inhibitor indomethacin, with an IC(50) value of 36nM. These results demonstrate that the IR/MAR gene amplification system is a simple but useful method for generating highly productive mammalian cells.  相似文献   
42.
The change in carotenoid-based bacterial color from yellow to red can be applied to whole-cell biosensors. We generated several green mutants to emphasize the color change in such biosensors. The blue-green crtI-deleted mutant, Rhodopseudomonas palustris no.711, accumulated the colorless carotenoid precursor, phytoene. Green Rhodovulum sulfidophilum M31 accumulated neurosporene, a downstream product of phytoene. Another green mutant, Rhodobacter sphaeroides Ga, accumulated neurosporene and chloroxanthin, which are both downstream products of phytoene. All green mutants accumulated bacteriochlorophyll a. Photosynthetic membrane obtained from the green mutants all exhibited decreased absorption of wavelength range at 510–570 nm. Therefore, these indicate that the greenish bacterial colors were mainly caused by the existence of bacteriochlorophyll a and the changes in carotenoid composition in photosynthetic membrane. The colors of the green mutants and their wild-type strains were plotted in the CIE-L*a*b* color space, and the color difference (ΔE*ab) values between a green mutant and its wild type were calculated. ΔE*ab values were higher in the green mutants than in Rdv. sulfidophilum CDM2, the yellowish host strain of reported biosensors. These data indicate that change in bacterial color from green to red is more distinguishable than that from yellow to red as a reporter signal of carotenoid-based whole-cell biosensors.  相似文献   
43.
We present here the first detailed kinetic analysis of the dissociation reaction of amyloid protofibrils by utilizing pressure as an accelerator of the reaction. The experiment is carried out on an excessively diluted typical protofibril solution formed from an intrinsically denatured disulfide-deficient variant of hen lysozyme with Trp fluorescence as the reporter in the pressure range 3-400 MPa. From the analysis of the time-dependent fluorescence decay and the length distribution of the protofibrils measured on atomic force microscopy, we conclude that the protofibril grows or decays by attachment or detachment of a monomer at one end of the protofibril with a monomer dissociation rate independent of the length of the fibril. Furthermore, we find that the dissociation reaction is strongly dependent on pressure, characterized with a negative activation volume DeltaV(odouble dagger) = -50.5 +/- 1.60 ml mol(-1) at 0.1 MPa and with a negative activation compressibility Deltakappa(double dagger) = -0.013 +/- 0.001 ml mol(-1) bar(-1) or -0.9 x 10(-6) ml g(-1) bar(-1). These results indicate that the protofibril is a highly compressible high-volume state, but that it becomes less compressible and less voluminous in the transition state, most probably due to partial hydration of the existing voids. The system eventually reaches the lowest-volume state with full hydration of the monomer in the dissociated state.  相似文献   
44.

Background

The way we formulate a mathematical model of an infectious disease to capture symptomatic and asymptomatic transmission can greatly influence the likely effectiveness of vaccination in the presence of vaccine effect for preventing clinical illness. The present study aims to assess the impact of model building strategy on the epidemic threshold under vaccination.

Methodology/Principal Findings

We consider two different types of mathematical models, one based on observable variables including symptom onset and recovery from clinical illness (hereafter, the “observable model”) and the other based on unobservable information of infection event and infectiousness (the “unobservable model”). By imposing a number of modifying assumptions to the observable model, we let it mimic the unobservable model, identifying that the two models are fully consistent only when the incubation period is identical to the latent period and when there is no pre-symptomatic transmission. We also computed the reproduction numbers with and without vaccination, demonstrating that the data generating process of vaccine-induced reduction in symptomatic illness is consistent with the observable model only and examining how the effective reproduction number is differently calculated by two models.

Conclusions

To explicitly incorporate the vaccine effect in reducing the risk of symptomatic illness into the model, it is fruitful to employ a model that directly accounts for disease progression. More modeling studies based on observable epidemiological information are called for.  相似文献   
45.
In the course of studying the secretory products of microglia, we detected protease activity in the conditioned medium. Various proteins (casein, histone, myelin basic protein, and extracellular matrix) were digested. The protease activity was characterized by using purified myelin basic protein as a substrate. Maximal activity was observed at neutral pH levels (7-8), which was different from the optimum pH level of proteolytic activity observed in the cell homogenate. The activity was inhibited approximately 60 and 50% by 1 mM phenylmethylsulfonyl fluoride and 40 microM elastatinal, respectively. In gel filtration, the major activity, which was inhibited in the presence of N-methoxysuccinyl-Ala-Ala-Pro-Val-methyl chloride, eluted at a position corresponding to a molecular mass of approximately 25 kDa. These results suggest that the major protease present in microglial conditioned medium is elastase or an elastase-like protease. This suggestion was confirmed by the finding that the 25-kDa protein band was stained with anti-elastase antiserum by western blotting. De novo synthesis of elastase in microglia was supported by [35S]methionine incorporation. In the presence of lipopolysaccharide, the secretory elastase decreased. These results demonstrate that microglia secrete proteases, one of which was identified as elastase. The significance of this enzyme production in physiological and pathological conditions is discussed.  相似文献   
46.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
47.
48.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   
49.
Glycerol‐3‐phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER‐GPAT and mitochondrial (Mt)‐GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt‐GPAT is essential for mitochondrial fusion. Mutation of Mt‐GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt‐GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP‐1 and by overexpression of mitochondrial fusion protein FZO‐1/mitofusin, suggesting that the fusion/fission balance is affected by Mt‐GPAT depletion. Mitochondrial fragmentation was also observed in Mt‐GPAT‐depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt‐GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt‐GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.  相似文献   
50.

Background

Chondroitin sulfate (CS) is a ubiquitous component of the cell surface and extracellular matrix and its sugar backbone consists of repeating disaccharide units: D-glucuronic acid (GlcUA)β1-3N-acetyl-D-galactosamine (GalNAc). Although CS participates in diverse biological processes such as growth factor signaling and the nervous system's development, the mechanism underlying the functions is not well understood.

Methods

CS was isolated from ray fish cartilage, an industrial waste, and its structure and neurite outgrowth-promoting (NOP) activity were analyzed to investigate a potential application to nerve regeneration.

Results

The major disaccharide unit in the CS preparation was GlcUA-GalNAc(6-O-sulfate) (61.9%). Minor proportions of GlcUA-GalNAc(4-O-sulfate) (27.0%), GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate) (8.5%), and GlcUA-GalNAc (2.7%) were also detected. The preparation showed NOP activity in vitro, and this activity was suppressed by antibodies against hepatocyte growth factor (HGF) and its receptor c-Met, suggesting the involvement of the HGF signaling pathway in the expression of the in vitro NOP activity of the CS preparation. The specific binding of HGF to the CS preparation was also demonstrated by surface plasmon resonance spectroscopy.

Conclusions and general significance

The NOP activity of CS from ray cartilage was demonstrated to be expressed through the HGF signaling pathway, suggesting that ray cartilage CS may be useful for studying the cooperative function of CS and HGF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号