首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3519篇
  免费   147篇
  国内免费   6篇
  3672篇
  2022年   13篇
  2021年   35篇
  2020年   20篇
  2019年   20篇
  2018年   29篇
  2017年   14篇
  2016年   60篇
  2015年   85篇
  2014年   103篇
  2013年   219篇
  2012年   213篇
  2011年   229篇
  2010年   125篇
  2009年   100篇
  2008年   205篇
  2007年   209篇
  2006年   223篇
  2005年   200篇
  2004年   208篇
  2003年   205篇
  2002年   171篇
  2001年   106篇
  2000年   100篇
  1999年   82篇
  1998年   45篇
  1997年   54篇
  1996年   35篇
  1995年   35篇
  1994年   35篇
  1993年   26篇
  1992年   46篇
  1991年   44篇
  1990年   30篇
  1989年   43篇
  1988年   26篇
  1987年   23篇
  1986年   22篇
  1985年   12篇
  1984年   35篇
  1983年   18篇
  1982年   20篇
  1981年   19篇
  1979年   11篇
  1977年   10篇
  1975年   10篇
  1974年   9篇
  1973年   9篇
  1972年   10篇
  1971年   10篇
  1968年   8篇
排序方式: 共有3672条查询结果,搜索用时 15 毫秒
51.
52.
T Aoki  N Noguchi  M Sasatsu  M Kono 《Gene》1987,51(1):107-111
The complete nucleotide sequence of pTZ12, a chloramphenicol-resistance (CmR) plasmid (2517 bp) derived from Corynebacterium xerosis plasmid pTZ10, has been determined after propagation in Bacillus subtilis. The nucleotide sequence of pTZ12 suggests that a recombination event may have occurred naturally within the open reading frames for the Rep protein of pT181 (or a pT181-like plasmid) and pC221 (or a pC221-like plasmid).  相似文献   
53.
54.
Evolutionary engineered polyhydroxyalkanoate (PHA) synthases from Pseudomonas sp. 61-3 enhance PHA accumulation and enable the monomer composition of PHAs to be regulated. We characterized a newly screened Ser477Arg (S477R) mutant of PHA synthase by in vivo analyses of P(3-hydroxybutyrate) [P(3HB)] homopolymer and P(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] copolymer productions in the recombinants of Escherichia coli. The results indicated that the S477R mutation contributed to a shift in substrate specificity to smaller monomers containing a 3HB unit rather than to an enhancement in catalytic activity. Multiple mutations of S477R with other beneficial mutations, for example, Ser325Cys, exhibited synergistic effects on both an increase in PHA production (from 9 wt % to 21 wt %) and an alteration of substrate specificity. Furthermore, the effects of complete amino acid substitutions at position 477 were characterized in terms of in vivo PHA production and in vitro enzymatic activity. The five mutations, S477Ala(A)/Phe(F)/His(H)/Arg(R)/Tyr(Y), resulted in a shift in substrate specificity to smaller monomer units. The S477Gly(G) mutant greatly enhanced activity toward all different sizes of substrates with carbon numbers ranging from 4 to 12. These results indicated that the residue 477 contributes to both the catalytic activity and substrate specificity of PHA synthase. In recombinant E. coli, the S477A/F/G/H/R/Y mutations consistently led to increases (up to 6 times that of wild-type enzyme) in weight average molecular weights of P(3HB) homopolymers. On the basis of our studies, we created a structural feasibility accounting for the mutational effects on enzymatic activity and substrate specificity of PHA synthase.  相似文献   
55.
The Warburg effect is an abnormal glycolysis response that is associated with cancer cells. Here we present evidence that metabolic changes resembling the Warburg effect are induced by a nonmammalian virus. When shrimp were infected with white spot syndrome virus (WSSV), changes were induced in several metabolic pathways related to the mitochondria. At the viral genome replication stage (12 h postinfection [hpi]), glucose consumption and plasma lactate concentration were both increased in WSSV-infected shrimp, and the key enzyme of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PDH), showed increased activity. We also found that at 12 hpi there was no alteration in the ADP/ATP ratio and that oxidative stress was lower than that in uninfected controls. All of these results are characteristic of the Warburg effect as it is present in mammals. There was also a significant decrease in triglyceride concentration starting at 12 hpi. At the late stage of the infection cycle (24 hpi), hemocytes of WSSV-infected shrimp showed several changes associated with cell death. These included the induction of mitochondrial membrane permeabilization (MMP), increased oxidative stress, decreased glucose consumption, and disrupted energy production. A previous study showed that WSSV infection led to upregulation of the voltage-dependent anion channel (VDAC), which is known to be involved in both the Warburg effect and MMP. Here we show that double-stranded RNA (dsRNA) silencing of the VDAC reduces WSSV-induced mortality and virion copy number. For these results, we hypothesize a model depicting the metabolic changes in host cells at the early and late stages of WSSV infection.  相似文献   
56.
4',5,7-Trihydroxy-3',5'-dimethoxyflavone (Tricin), a naturally occurring flavone, has anti-inflammatory potential and exhibits diverse biological activities including antigrowth activity in several human cancer cell lines and cancer chemopreventive effects in the gastrointestinal tract of mice. The present study aimed to investigate the biological actions of tricin on hepatic stellate cells (HSCs) in vitro, exploring its potential as a treatment of liver fibrosis, since HSC proliferation is closely related to the progression of hepatic fibrogenesis in chronic liver diseases leading to irreversible liver cirrhosis and hepatocellular carcinoma. Tricin inhibited platelet-derived growth factor (PDGF)-BB-induced cell proliferation by blocking cell cycle progression and cell migration in the human HSC line LI90 and culture-activated HSCs. It also reduced the phosphorylation of PDGF receptor β and the downstream signaling molecules ERK1/2 and Akt, which might be due to its tyrosine kinase inhibitor properties rather than inhibition of the direct binding between PDGF-BB and its receptor. Our findings suggest that tricin might be beneficial in HSC-targeting therapeutic or chemopreventive applications for hepatic fibrosis.  相似文献   
57.
58.
59.
A new algorithm was developed for the estimation of the metabolic flux distribution based on GC-MS data of proteinogenic amino acids. By using a sensitive GC-MS protocol as well as by combining the global search algorithm such as the genetic algorithm with the local search algorithm such as the Levenberg-Marquardt algorithm, not only the distribution of the net fluxes in the entire network, but also certain exchange fluxes which contribute significantly to the isotopomer distribution could be quantified. This mass isotopomer analysis could identify the biochemical changes involved in the regulation where acetate or glucose was used as a main carbon source. The metabolic flux analysis clearly revealed that when the specific growth rate increased, only a slight change in flux distribution was observed for acetate metabolism, indicating that subtle regulation mechanism exists in certain key junctions of this network system. Different from acetate metabolism, when glucose was used as a carbon source, as the growth rate increased, a significant increase in relative pentose phosphate pathway (PPP) flux was observed for Escherichia coli K12 at the expense of the citric acid cycle, suggesting that when growing on glucose, the flux catalyzed by isocitrate dehydrogenase could not fully fulfill the NADPH demand for cell growth, causing the oxidative PPP to be utilized to a larger extent so as to complement the NADPH demand. The GC-MS protocol as well as the new algorithm demonstrated here proved to be a powerful tool for characterizing metabolic regulation and can be utilized for strain improvement and bioprocess optimization.  相似文献   
60.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号