首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2140篇
  免费   204篇
  2022年   12篇
  2021年   23篇
  2020年   11篇
  2019年   16篇
  2018年   23篇
  2017年   17篇
  2016年   25篇
  2015年   44篇
  2014年   62篇
  2013年   98篇
  2012年   80篇
  2011年   94篇
  2010年   66篇
  2009年   56篇
  2008年   102篇
  2007年   96篇
  2006年   100篇
  2005年   99篇
  2004年   83篇
  2003年   112篇
  2002年   90篇
  2001年   87篇
  2000年   87篇
  1999年   80篇
  1998年   35篇
  1997年   17篇
  1996年   24篇
  1995年   28篇
  1994年   32篇
  1993年   27篇
  1992年   69篇
  1991年   62篇
  1990年   52篇
  1989年   64篇
  1988年   44篇
  1987年   41篇
  1986年   28篇
  1985年   29篇
  1984年   21篇
  1983年   15篇
  1982年   10篇
  1981年   13篇
  1980年   9篇
  1979年   20篇
  1978年   17篇
  1977年   17篇
  1976年   11篇
  1975年   10篇
  1974年   22篇
  1970年   14篇
排序方式: 共有2344条查询结果,搜索用时 109 毫秒
141.
The tobacco whitefly Bemisia tabaci (Gennadius) cryptic species complex and of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are extensively reported as destructive pests in vegetable crops worldwide. A survey was conducted in 2011 and 2012 to determine the occurrence and genetic diversity present in the populations of these whiteflies in the major vegetable production areas of Costa Rica. Insect samples were collected from sweet pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), common bean (Phaseolus vulgaris L.) and weeds present in commercial crops either in open field or greenhouse conditions. PCR‐RFLP analysis of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI) sequences of 621 whitefly individuals confirmed the presence of the Mediterranean (MED) type of the B. tabaci and of T. vaporariorum in most sampled regions. Also, individuals of the Middle East‐Asia Minor 1 (MEAM1) type of the B. tabaci were observed in low numbers. Contingency analyses based on type of crop, geographical region, whitefly species, year of collection and production system confirmed that T. vaporariorum was the most frequent species in vegetable production areas in Costa Rica, both in greenhouses and in open fields. B. tabaci MED is likely spreading to new areas of the country, whereas B. tabaci MEAM1 was mostly absent or rarely found. Comparisons of mtCOI sequences from B. tabaci individuals revealed the presence of four B. tabaci sequence haplotypes (named MED‐i, MED‐ii, MEAM1‐i, MEAM1‐xviii) in Costa Rica, three of them identical to B. tabaci haplotypes previously reported in the Western Hemisphere and other parts of the world. Analysis of sequences of T. vaporariorum individuals revealed a more complex population with the presence of 11 haplotypes, two of which were identical to T. vaporariorum sequences reported from other countries.  相似文献   
142.
gamma-Hexachlorocyclohexane dehydrochlorinase (LinA) catalyzes the initial steps in the biotransformation of the important insecticide gamma-hexachlorocyclohexane (gamma-HCH) by the soil bacterium Sphingomonas paucimobilis UT26. Stereochemical analysis of the reaction products formed during conversion of gamma-HCH by LinA was investigated by GC-MS, NMR, CD, and molecular modeling. The NMR spectra of 1,3,4,5,6-pentachlorocyclohexene (PCCH) produced from gamma-HCH using either enzymatic dehydrochlorination or alkaline dehydrochlorination were compared and found to be identical. Both enantiomers present in the racemate of synthetic gamma-PCCH were converted by LinA, each at a different rate. 1,2,4-trichlorobenzene (1,2,4-TCB) was detected as the only product of the biotransformation of biosynthetic gamma-PCCH. 1,2,4-TCB and 1,2,3-TCB were identified as the dehydrochlorination products of racemic gamma-PCCH. delta-PCCH was detected as the only product of dehydrochlorination of delta-HCH. LinA requires the presence of a 1,2-biaxial HCl pair on a substrate molecule. LinA enantiotopologically differentiates two 1,2-biaxial HCl pairs present on gamma-HCH and gives rise to a single PCCH enantiomer 1,3(R),4(S),5(S),6(R)-PCCH. Furthermore, LinA enantiomerically differentiates 1,3(S),4(R),5(R),6(S)-PCCH and 1,3(R),4(S),5(S),6(R)-PCCH. The proposed mechanism of enzymatic biotransformation of gamma-HCH to 1,2,4-TCB by LinA consists of two 1,2-anti conformationally dependent dehydrochlorinations followed by 1,4-anti dehydrochlorination.  相似文献   
143.
144.
Cytotoxic lymphocytes such as CTL and NK cells play principal roles in the host defense mechanisms. Monitoring these effector cells in vivo is helpful to understand the immune responses in disorders such as cancer and infectious diseases. In this study, we identified a novel secretory protein, killer-specific secretory protein of 37 kDa (Ksp37), as a Th1-specific protein by a subtractive cloning method between human Th1 and Th2 cells. In peripheral blood leukocytes, Ksp37 expression was limited to Th1-type CD4(+) T cells, effector CD8(+) T cells, gammadelta T cells, and CD16(+) NK cells. Most of these Ksp37-expressing cells coexpressed perforin, indicating that Ksp37 is selectively and commonly expressed in the lymphocytes that have cytotoxic potential. Ksp37 was released at constant rate from both unstimulated and stimulated PBMCs in vitro and also detected in normal human sera. In healthy individuals, serum Ksp37 levels were significantly higher in children (mean +/- SD; 984 +/- 365 ng/ml for age 0-9) than in adults (441 +/- 135 ng/ml for age 20-99), consistent with reported differences in the absolute counts of blood T and NK cells between children and adults. In patients with infectious mononucleosis, transient elevation of serum Ksp37 levels was observed during the early acute phase of primary EBV infection. These results suggest that Ksp37 may be involved in an essential process of cytotoxic lymphocyte-mediated immunity and that Ksp37 may also have clinical value as a new type of serum indicator for monitoring cytotoxic lymphocytes in vivo.  相似文献   
145.
Fibroblast growth factors (FGFs) bind to extracellular matrices, especially heparin-like carbohydrates of heparansulfate proteoglycans which stabilize FGFs to protect against inactivation by heat, acid, proteolysis and oxidation. Moreover, binding of FGFs to cell surface proteoglycans promotes to form oligomers, which is essential for receptor oligomerization and activation. In the present study, we determined the solution structure of acidic FGF using a series of triple resonance multi-dimensional NMR experiments and simulated annealing calculations. Furthermore, we prepared the sample complexed with a heparin-derived hexasaccharide which is a minimum unit for aFGF binding. From the chemical shift differences between free aFGF and aFGF-heparin complex, we concluded that the major heparin binding site was located on the regions 110–131 and 17–21. The binding sites are quite similar to those observed for bFGF-heparin hexasaccharide complex, showing that both FGFs recognize heparin- oligosaccharides in a similar manner.  相似文献   
146.
We previously demonstrated that insect cells were able to synthesize recombinant human procollagen I as triple-helical heterotrimers when transfected with cDNAs of both proalpha1(I) and proalpha2(I) chains. However, most of the heterotrimers were retained within the cells, unlike in the case of mammalian cells [Tomita, M., Kitajima, T., and Yoshizato, K. (1997) J. Biochem. 1061-1069]. In an attempt to improve the secretion of the heterotrimers, we introduced the putative collagen-specific chaperone HSP47 into this insect expression model. Mouse HSP47 produced by the insect cells bound intracellularly to both human proalpha1(I) and proalpha2(I) chains and enhanced the secretion of procollagen I heterotrimers. HSP47 was also coexpressed with either proalpha1(I) chains or proalpha2(I) chains, which showed that it enhanced the secretion of the former but not the latter. This selective effect of HSP47 was similarly observed in the cells treated with inhibitors of procollagen triple helix formation, indicating that HSP47 can also accelerate the secretion of non-helical procollagens. HSP47 did not change the intracellular solubility of proalpha1(I) and proalpha2(I) chains in 1% NP-40, eliminating the possibility that it prevents proalpha chains from aggregating into insoluble forms within the insect cells. We concluded that HSP47 can play a role in the secretion of alpha1(I)-procollagen chains in the insect cell model. The present study also demonstrated the dissimilarity in the mechanism of folding and secretion of the expressed procollagen I between the insect and mammalian cells.  相似文献   
147.
HSP47 is a collagen-binding heat shock protein and is assumed to act as a molecular chaperone in the biosynthesis and secretion of procollagen. As the synthesis of HSP47 is closely correlated with that of collagen in various cell lines and tissues, we performed a promoter/reporter assay using HSP47-producing and nonproducing cells. 280 base pairs (bp(s)) of upstream promoter were shown to be necessary for the basal expression but not to be enough for the cell type-specific expression. When the first and the second introns were introduced downstream of this 280-bp region, marked up-regulation of the reporter activity was observed in HSP47-producing cells but not in nonproducing cells. This was confirmed in transgenic mice by staining the lacZ gene product under the control of the 280-bp upstream promoter and the introns. Staining was observed in skin, chondrocytes, precursor of bone, and other HSP47/collagen-producing tissues. A putative Sp1-binding site at -210 bp in the promoter, to which Sp3 and an unidentified protein bind, was shown to be responsible for this up-regulation when combined with the introns. However no difference in the binding to this probe was observed between HSP47-producing and nonproducing cells. The responsible region for cell type-specific up-regulation was found to be located in a 500-bp segment in the first intron. On electrophoresis mobility shift assay using this 500-bp probe, specific DNA-protein complexes were only observed in HSP47-producing cell extracts. These results suggest that two separate elements are necessary for the cell type-specific expression of the hsp47 gene; one is a putative Sp1-binding site at -210 bp necessary for basal expression, and the other is a 500-bp region within the first intron, required for cell type-specific expression.  相似文献   
148.
Heterogeneous nuclear ribonucleoprotein (hnRNP) D0 has two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), each of which can bind solely to the UUAG sequence specifically. The structure of the N-terminal RBD (RBD1) determined by NMR is presented here. It folds into a compact alphabeta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of the RNP-type RBDs. Special structural features of RBD1 include N-capping boxes for both alpha-helices, a beta-bulge in the second beta-strand, and an additional short antiparallel beta-sheet coupled with a beta-turn-like structure in a loop. Two hydrogen bonds which restrict the positions of loops were identified. Backbone resonance assignments for RBD1 complexed with r(UUAGGG) revealed that the overall folding is maintained in the complex. The candidate residues involved in the interactions with RNA were identified by chemical shift perturbation analysis. They are located in the central and peripheral regions of the RNA-binding surface composed of the four-stranded beta-sheet, loops, and the C-terminal region. It is suggested that non-specific interactions with RNA are performed by the residues in the central region of the RNA-binding surface, while specific interactions are performed by those in the peripheral regions. It was also found that RBD1 has the ability to inhibit the formation of the quadruplex structure.  相似文献   
149.
We previously demonstrated that amino acid residues Gln62 (P3), Phe63 (P2), Leu64 (P1), and Phe67 (P3') in the primary binding loop of Erythrina variegata chymotrypsin inhibitor (ECI), a member of the Kunitz inhibitor family, are involved in its strong inhibitory activity toward chymotrypsin [Iwanaga et al. (1998) J. Biochem. 124, 663-669]. To determine whether or not these four amino acid residues predominantly contribute to the strong inhibitory activity of ECI, they were simultaneously replaced by Ala. The results showed that a quadruple mutant, Q62A/F63A/L64A/F67A, retained considerable inhibitory activity (Ki, 5.6 x 10(-7) M), indicating that in addition to the side chains of these four amino acid residues, the backbone structure of the primary binding loop in ECI is essential for the inhibitory activity toward chymotrypsin. Two chimeric proteins, in which the primary binding loops of ECI and ETIa were exchanged: an isoinhibitor from E. variegata with lower chymotrypsin inhibitory activity, were constructed to determine whether the backbone structure of the primary binding loop of ECI was formed by the amino acid residues therein, or through an interaction between the primary binding loop and the residual structure designated as the "scaffold." A chimeric protein, ECI/ETIa, composed of the primary binding loop of ECI and the scaffold of ETIa showed weaker inhibitory activity (Ki, 1.3 x 10(-6) M) than ECI (Ki, 9.8 x 10(-8) M). In contrast, a chimera, ETIa/ECI, comprising the primary binding loop of ETIa and the scaffold of ECI inhibited chymotrypsin more strongly (Ki, 5.7 x 10(-7) M) than ETIa (Ki, 1.3 x 10(-6) M). These results indicate that the intramolecular interaction between the primary binding loop and the scaffold of ECI plays an important role in the strong inhibitory activity toward chymotrypsin. Furthermore, surface plasmon resonance analysis revealed that the side chains on the primary binding loop of ECI contribute to both an increase in the association rate constant (kon) and a decrease in the dissociation rate constant (koff) for the ECI-chymotrypsin interaction, whereas the backbone structure of the primary binding loop mainly contributes to a decrease in the dissociation rate constant.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号