首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   986篇
  免费   47篇
  1033篇
  2023年   4篇
  2022年   10篇
  2021年   11篇
  2020年   11篇
  2019年   8篇
  2018年   6篇
  2017年   9篇
  2016年   27篇
  2015年   33篇
  2014年   33篇
  2013年   58篇
  2012年   53篇
  2011年   53篇
  2010年   27篇
  2009年   40篇
  2008年   53篇
  2007年   54篇
  2006年   62篇
  2005年   55篇
  2004年   58篇
  2003年   48篇
  2002年   47篇
  2001年   21篇
  2000年   22篇
  1999年   26篇
  1998年   8篇
  1997年   11篇
  1996年   8篇
  1995年   4篇
  1994年   8篇
  1993年   5篇
  1992年   11篇
  1991年   12篇
  1990年   7篇
  1989年   11篇
  1988年   18篇
  1987年   13篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   11篇
  1980年   4篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1976年   4篇
  1973年   5篇
  1971年   3篇
排序方式: 共有1033条查询结果,搜索用时 15 毫秒
11.
Helix contents of sodium poly(L-glutamate) in aqueous NaCl solutions were estimated as functions of the degree of ionizalion, alpha. and the salt concentration by CD measurement. The helix content increases with increasing salt concentration but this helix stabilization decreases with decreasing alpha and at alpha<0.25 the helix conformation is destabilized by salt addition. The alpha dependence of the helix stabilization was qualitatively interpreted by Manning's theory in which electrostatic interactions between charges on alternatively arrayed coil and helix segments in a simplified polymer model were incorporated.  相似文献   
12.
Arteriovenous anastomoses in the rabbit ear were examined with scanning electron microscopy to elucidate the structural differentiation of the media of the shunt. Arterial, intermediate, and venous segments in the shunt and two layers of the media in the intermediate segment were differentiated based on cell shape and cell organization. In the arterial segment, smooth muscle cells were spindle-shaped, either elongated or short, with a few branches, and were arranged circularly or diagonally with respect to the vessel's long axis. There were also stellate muscle cells with radiating processes. In the intermediate segment, the smooth muscle cells of the outer layer of the media were also arranged circularly and resembled the elongated cells in the arterial segments, but they were more irregular in shape and had more processes than those of the arterial segment. The epithelioid cells of the inner layer of the media were oval or polygonal and oriented irregularly with respect to the vessel's long axis, clustering to form longitudinal plicae. The smooth muscle cells of the venous segment were flat with many lateral processes and formed a thin, discontinuous layer. The smooth muscle cells in the arterial segment and those of the outer layer of the intermediate segment exhibited a highly rugged surface texture, indicating their strong contractility; the epithelioid cells and the smooth muscle cells in the venous segment exhibited a generally smooth surface, indicating less contractility. The intermediate segments were supplied with a dense nerve plexus. The intermediate segments, therefore, may be actively involved in the regulation of blood flow under neuronal influence.  相似文献   
13.
Epizootiological surveys of Leucocytozoon caulleryi infection in chickens in Japan, Taiwan, Philippines, Singapore, Malaysia and Thailand were undertaken by means of the immunodiffusion test. The rate of infection of L. caulleryi confirmed by the examination of parasites in the peripheral blood of chickens coincided with that of positive antibody response in the immunodiffusion test. Antibodies against L. caulleryi were found in chickens in all the countries surveyed in the present investigation. The prevalence of L. caulleryi infection in chickens was confirmed by the immunodiffusion test. Several chickens in each country showed the presence of serum antigens of L. caulleryi at the times of serum sample collection. These results seemed to indicate that the immunodiffusion test is a method efficient enough to be applicable to the epizootiological surveys and diagnosis of L. caulleryi infection in chickens in the field. As a result, the antibodies or soluble antigens in the sera of chickens infected with L. caulleryi present, respectively, in each country may have the same immunological characters.  相似文献   
14.
A collagenase, active against native helical collagen, was initially found in the explant medium of bovine dental pulp. In contrast to the collagenases from other oral tissues, all the pulp enzyme released was in a latent form which was activated by trypsin treatment, 4-aminophenylmercuric acetate, and some chaotropic agents. The activated enzyme was inhibited by low concentrations of EDTA and calf serum. The molecular weight of activated enzyme was tentatively estimated at 45,000 daltons by gel filtration. The enzyme attacked undenatured collagen in solution at 20°C producing characteristic products αA(34) and αB(14).  相似文献   
15.
Summary In order to ascertain the frequency of chromosome aberrations among newborn infants in Japan, a chromosome survey of a large number of newborn infants is in progress. A consecutive series of 12,319 newborn babies, 6382 male and 5937 female, have been screened for clinical manifestations of autosomal aberrations and for sex chromatin and sex chromosome aberrations. Chromosome studies were carried out on 694 infants with suspected chromosome aberrations. The clinically abnormal infants were screened by conventional staining, and banding techniques have been used in the part of the study performed since 1974. Of the clincally abnormal infants, 25 had abnormal karyotypes, including two males with a 47,XXY complement, one female with a 45,X complement, three male infants with a 47,XYY complement, two with trisomy 13 syndrome, three with trisomy 18 (including one case of mosaicism), eleven with Down's syndrome (including one case of mosaicism), one with B5p partial trisomy, one with cri-du-chat syndrome, and one with Y/D translocation. The overall results are comparable to those of previous population cytogenetic studies only in the autosomal trisomies and sex chromosome abnormalities and in that the observed frequencies were comparable to those found in studies in Caucasians.To whom offprint requests should be sent  相似文献   
16.
Summary Detailed histochemical studies have been conducted on the distribution of various enzymes such as thiamine pyrophosphatase, α-glucan phosphorylase, hexokinase, glucose-6-phosphate dehydrogenase, aldolase, lactate dehydrogenase and succinate dehydrogenase in various components of the nucleusEdinger-Westphali, nucleus n. oculomotorii, nucleus ruber and nucleus niger of healthy adult male Wistar strain rats. The thiamine pyrophosphatase reaction showed the morphological patterns of the Golgi apparatus characteristic for each nucleus. The Golgi apparatus was well developed in the nucleusEdinger-Westphali, composing a network of highly fenestrated plates in the nucleus n. oculomotorii and nucleus ruber, and a simple network in the nucleus niger. These results indicate that the former three nuclei need a rich energy supply and argue against the possibility that the four nuclei have a secretory role. The neurons of the nucleusEdinger-Westphali may derive their energy mainly from glucose of the circulating blood, but glial cells may serve as energy donators to the neurons in the pars compacta of the nucleus niger, and the neurons of the other nuclei may derive energy from both sources. These conclusions are consistent with the morphological patterns of the Golgi apparatus. It is suggested that the neurons of the nucleusEdinger-Westphali, nucleus n. oculomotorii, nucleus ruber and of the pars lateralis of the nucleus niger may be equipped almost equally with the Embden-Meyerhof pathway and with the hexose monophosphate shunt. But, the hexose monophosphate shunt is dominant in the pars compacta of the nucleus niger. It is also suggested that the pattern of distribution of succinate dehydrogenase may parallel that of lactate dehydrogenase. The nucleus n. oculomotorii, and nucleus ruber have a higher level of oxidative metabolism than the nucleusEdinger-Westphali and the nucleus niger. The nucleusEdinger-Westphali may be representative of autonomic nuclei with low oxidative metabolism whereas the nucleus n. oculomotorii may represent motor nuclei with high oxidative metabolism. Predominance of hexose monophosphate shunt, intense hexokinase reaction around the neurons, and weak activity of succinate dehydrogenase indicate that the pars compacta of the nucleus niger belongs to the category of “exceptional nuclei”.  相似文献   
17.
Unwinding of the replication origin and loading of DNA helicases underlie the initiation of chromosomal replication. In Escherichia coli, the minimal origin oriC contains a duplex unwinding element (DUE) region and three (Left, Middle, and Right) regions that bind the initiator protein DnaA. The Left/Right regions bear a set of DnaA-binding sequences, constituting the Left/Right-DnaA subcomplexes, while the Middle region has a single DnaA-binding site, which stimulates formation of the Left/Right-DnaA subcomplexes. In addition, a DUE-flanking AT-cluster element (TATTAAAAAGAA) is located just outside of the minimal oriC region. The Left-DnaA subcomplex promotes unwinding of the flanking DUE exposing TT[A/G]T(T) sequences that then bind to the Left-DnaA subcomplex, stabilizing the unwound state required for DnaB helicase loading. However, the role of the Right-DnaA subcomplex is largely unclear. Here, we show that DUE unwinding by both the Left/Right-DnaA subcomplexes, but not the Left-DnaA subcomplex only, was stimulated by a DUE-terminal subregion flanking the AT-cluster. Consistently, we found the Right-DnaA subcomplex–bound single-stranded DUE and AT-cluster regions. In addition, the Left/Right-DnaA subcomplexes bound DnaB helicase independently. For only the Left-DnaA subcomplex, we show the AT-cluster was crucial for DnaB loading. The role of unwound DNA binding of the Right-DnaA subcomplex was further supported by in vivo data. Taken together, we propose a model in which the Right-DnaA subcomplex dynamically interacts with the unwound DUE, assisting in DUE unwinding and efficient loading of DnaB helicases, while in the absence of the Right-DnaA subcomplex, the AT-cluster assists in those processes, supporting robustness of replication initiation.

The initiation of bacterial DNA replication requires local duplex unwinding of the chromosomal replication origin oriC, which is regulated by highly ordered initiation complexes. In Escherichia coli, the initiation complex contains oriC, the ATP-bound form of the DnaA initiator protein (ATP–DnaA), and the DNA-bending protein IHF (Fig. 1, A and B), which promotes local unwinding of oriC (1, 2, 3, 4). Upon this oriC unwinding, two hexamers of DnaB helicases are bidirectionally loaded onto the resultant single-stranded (ss) region with the help of the DnaC helicase loader (Fig. 1B), leading to bidirectional chromosomal replication (5, 6, 7, 8). However, the fundamental mechanism underlying oriC-dependent bidirectional DnaB loading remains elusive.Open in a separate windowFigure 1Schematic structures of oriC, DnaA, and the initiation complexes. A, the overall structure of oriC. The minimal oriC region and the AT-cluster region are indicated. The sequence of the AT-cluster−DUE (duplex-unwinding element) region is also shown below. The DUE region (DUE; pale orange bars) contains three 13-mer repeats: L-DUE, M-DUE, and R-DUE. DnaA-binding motifs in M/R-DUE, TT(A/G)T(T), are indicated by red characters. The AT-cluster region (AT cluster; brown bars) is flanked by DUE outside of the minimal oriC. The DnaA-oligomerization region (DOR) consists of three subregions called Left-, Middle-, and Right-DOR. B, model for replication initiation. DnaA is shown as light brown (for domain I–III) and darkbrown (for domain IV) polygons (right panel). ATP–DnaA forms head-to-tail oligomers on the Left- and Right-DORs (left panel). The Middle-DOR (R2 box)-bound DnaA interacts with DnaA bound to the Left/Right-DORs using domain I, but not domain III, stimulating DnaA assembly. IHF, shown as purple hexagons, bends DNA >160° and supports DUE unwinding by the DnaA complexes. M/R-DUE regions are efficiently unwound. Unwound DUE is recruited to the Left-DnaA subcomplex and mainly binds to R1/R5M-bound DnaA molecules. The sites of ssDUE-binding B/H-motifs V211 and R245 of R1/R5M-bound DnaA molecules are indicated (pink). Two DnaB homohexamer helicases (light green) are recruited and loaded onto the ssDUE regions with the help of the DnaC helicase loader (cyan). ss, single stranded.The minimal oriC region consists of the duplex unwinding element (DUE) and the DnaA oligomerization region (DOR), which contains specific arrays of 9-mer DnaA-binding sites (DnaA boxes) with the consensus sequence TTA[T/A]NCACA (Fig. 1A) (3, 4). The DUE underlies the local unwinding and contains 13-mer AT-rich sequence repeats named L-, M-, and R-DUE (9). The M/R-DUE region includes TT[A/G]T(A) sequences with specific affinity for DnaA (10). In addition, a DUE-flanking AT-cluster (TATTAAAAAGAA) region resides just outside of the minimal oriC (Fig. 1A) (11). The DOR is divided into three subregions, the Left-, Middle-, and Right-DORs, where DnaA forms structurally distinct subcomplexes (Fig. 1A) (8, 12, 13, 14, 15, 16, 17). The Left-DOR contains high-affinity DnaA box R1, low-affinity boxes R5M, τ1−2, and I1-2, and an IHF-binding region (17, 18, 19, 20). The τ1 and IHF-binding regions partly overlap (17).In the presence of IHF, ATP–DnaA molecules cooperatively bind to R1, R5M, τ2, and I1-2 boxes in the Left-DOR, generating the Left-DnaA subcomplex (Fig. 1B) (8, 17). Along with IHF causing sharp DNA bending, the Left-DnaA subcomplex plays a leading role in DUE unwinding and subsequent DnaB loading. The Middle-DOR contains moderate-affinity DnaA box R2. Binding of DnaA to this box stimulates DnaA assembly in the Left- and Right-DORs using interaction by DnaA N-terminal domain (Fig. 1B; also see below) (8, 12, 14, 16, 21). The Right-DOR contains five boxes (C3-R4 boxes) and cooperative binding of ATP–DnaA molecules to these generates the Right-DnaA subcomplex (Fig. 1B) (12, 18). This subcomplex is not essential for DUE unwinding and plays a supportive role in DnaB loading (8, 15, 17). The Left-DnaA subcomplex interacts with DnaB helicase, and the Right-DnaA subcomplex has been suggested to play a similar role (Fig. 1B) (8, 13, 16).In the presence of ATP–DnaA, M- and R-DUE adjacent to the Left-DOR are predominant sites for in vitro DUE unwinding: unwinding of L-DUE is less efficient than unwinding of the other two (Fig. 1B) (9, 22, 23). Deletion of L-DUE or the whole DUE inhibits replication of oriC in vitro moderately or completely, respectively (23). A chromosomal oriC Δ(AT-cluster−L-DUE) mutant with an intact DOR, as well as deletion of Right-DOR, exhibits limited inhibition of replication initiation, whereas the synthetic mutant combining the two deletions exhibits severe inhibition of cell growth (24). These studies suggest that AT-cluster−L-DUE regions stimulate replication initiation in a manner concerted with Right-DOR, although the underlying mechanisms remain elusive.DnaA consists of four functional domains (Fig. 1B) (4, 25). Domain I supports weak domain I–domain I interaction and serves as a hub for interaction with various proteins such as DnaB helicase and DiaA, which stimulates ATP–DnaA assembly at oriC (26, 27, 28, 29, 30). Two or three domain I molecules of the oriC–DnaA subcomplex bind a single DnaB hexamer, forming a stable higher-order complex (7). Domain II is a flexible linker (28, 31). Domain III contains AAA+ (ATPase associated with various cellular activities) motifs essential for ATP/ADP binding, ATP hydrolysis, and DnaA–DnaA interactions in addition to specific sites for ssDUE binding and a second, weak interaction with DnaB helicase (1, 4, 8, 10, 19, 25, 32, 33, 34, 35). Domain IV bears a helix-turn-helix motif with specific affinity for the DnaA box (36).As in typical AAA+ proteins, a head-to-tail interaction underlies formation of ATP–DnaA pentamers on the DOR, where the AAA+ arginine-finger motif Arg285 recognizes ATP bound to the adjacent DnaA protomer, promoting cooperative ATP–DnaA binding (Fig. 1B) (19, 32). DnaA ssDUE-binding H/B-motifs (Val211 and Arg245) in domain III sustain stable unwinding by directly binding to the T-rich (upper) strand sequences TT[A/G]T(A) within the unwound M/R-DUE (Fig. 1B) (8, 10). Val211 residue is included in the initiator-specific motif of the AAA+ protein family (10). For DUE unwinding, ssDUE is recruited to the Left-DnaA subcomplex via DNA bending by IHF and directly interacts with H/B-motifs of DnaA assembled on Left-DOR, resulting in stable DUE unwinding competent for DnaB helicase loading; in particular, DnaA protomers bound to R1 and R5M boxes play a crucial role in the interaction with M/R-ssDUE (Fig. 1B) (8, 10, 17). Collectively, these mechanisms are termed ssDUE recruitment (4, 17, 37).Two DnaB helicases are thought to be loaded onto the upper and lower strands of the region including the AT-cluster and DUE, with the aid of interactions with DnaC and DnaA (Fig. 1B) (25, 38, 39). DnaC binding modulates the closed ring structure of DnaB hexamer into an open spiral form for entry of ssDNA (40, 41, 42, 43). Upon ssDUE loading of DnaB, DnaC is released from DnaB in a manner stimulated by interactions with ssDNA and DnaG primase (44, 45). Also, the Left- and Right-DnaA subcomplexes, which are oriented opposite to each other, could regulate bidirectional loading of DnaB helicases onto the ssDUE (Fig. 1B) (7, 8, 35). Similarly, recent works suggest that the origin complex structure is bidirectionally organized in both archaea and eukaryotes (146). In Saccharomyces cerevisiae, two origin recognition complexes containing AAA+ proteins bind to the replication origin region in opposite orientations; this, in turn, results in efficient loading of two replicative helicases, leading to head-to-head interactions in vitro (46). Consistent with this, origin recognition complex dimerization occurs in the origin region during the late M-G1 phase (47). The fundamental mechanism of bidirectional origin complexes might be widely conserved among species.In this study, we analyzed various mutants of oriC and DnaA in reconstituted systems to reveal the regulatory mechanisms underlying DUE unwinding and DnaB loading. The Right-DnaA subcomplex assisted in the unwinding of oriC, dependent upon an interaction with L-DUE, which is important for efficient loading of DnaB helicases. The AT-cluster region adjacent to the DUE promoted loading of DnaB helicase in the absence of the Right-DnaA subcomplex. Consistently, the ssDNA-binding activity of the Right-DnaA subcomplex sustained timely initiation of growing cells. These results indicate that DUE unwinding and efficient loading of DnaB helicases are sustained by concerted actions of the Left- and Right-DnaA subcomplexes. In addition, loading of DnaB helicases are sustained by multiple mechanisms that ensure robust replication initiation, although the complete mechanisms are required for precise timing of initiation during the cell cycle.  相似文献   
18.
Bioconversion experiments of various mono- or di-substituted naphthalenes such as dimethylnaphthalenes were carried out using the cells of Escherichia coli that expressed aromatic dihydroxylating dioxygenase genes (phnA1A2A3A4 and phdABCD) from polycyclic aromatic hydrocarbon-utilizing marine bacteria, Nocardioides sp. KP7 and Cycloclasticus sp. A5, respectively. We found that the former dioxygenase PhnA1A2A3A4 had broad substrate preference for these compounds and often was able to hydroxylate their methyl groups. Specifically, 1,4-dimethylnaphthalene was predominantly bioconverted into 1,4-dihydroxymethylnaphthalene.  相似文献   
19.
(R)-2-(4′-Isobutylphenyl)propanoic acid (ibuprofen), (S)-3(4′-isobutylphenyl)butanoic acid and (S)-4-(4′-isobutylphenyl)pentanoic acid were obtained using microbial oxidation of (±)-l-isobutyl-4-(1′ -methyloctyl)benzene by Rhodococcus sp. BPM 1613.  相似文献   
20.
Fuzzy reasoning was applied to control both ethanol and glucose concentrations in fed-batch cultures of baker's yeast. This fuzzy controller consisted of three membership functions (concentrations of dissolved oxygen (DO), ethanol and glucose) and 18 production rules. Fuzzy inference was carried out by IF {A is a and B is b,...#x007D;, THEN {C is c} from the on-line measured concentrations of DO, ethanol and glucose. When medium concentrations of ethanol and glucose in fed-batch culture of baker's yeast were set at 2 g/l and 0.2 g/l, both ethanol and glucose concentrations were controlled at 2.67±0.35 g/l and 0.27±0.25 g/l, respectively, ethanol production was reduced from 26 g/l to 34 g/l, cell yield increased from 0.38 to 0.53 g dry cell/g consumed glucose and ethanol yield decreased from 0.50 to 0.14 g ethanol/g consumed glucose, respectively, as compared with those of the glucose only control at 0.2 g/l.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号