首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   17篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   16篇
  2014年   23篇
  2013年   22篇
  2012年   29篇
  2011年   20篇
  2010年   15篇
  2009年   17篇
  2008年   31篇
  2007年   31篇
  2006年   22篇
  2005年   32篇
  2004年   28篇
  2003年   19篇
  2002年   24篇
  2001年   2篇
  2000年   8篇
  1999年   3篇
  1998年   9篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   9篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1968年   2篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有433条查询结果,搜索用时 451 毫秒
131.
The lowermost portion of the resting (telogen) follicle consists of the bulge and secondary hair germ. We previously showed that the progeny of stem cells in the bulge form the lower follicle and hair, but the relationship of the bulge cells with the secondary hair germ cells, which are also involved in the generation of the new hair at the onset of the hair growth cycle (anagen), remains unclear. Here we address whether secondary hair germ cells are derived directly from epithelial stem cells in the adjacent bulge or whether they arise from cells within the lower follicle that survive the degenerative phase of the hair cycle (catagen). We use 5-bromo-2'-deoxyuridine to label bulge cells at anagen onset, and demonstrate that the lowermost portion of the bulge collapses around the hair and forms the secondary hair germ during late catagen. During the first six days of anagen onset bulge cells proliferate and self-renew. Bulge cell proliferation at this time also generates cells that form the future secondary germ. As bulge cells form the secondary germ cells at the end of catagen, they lose expression of a biochemical marker, S100A6. Remarkably, however, following injury of bulge cells by hair depilation, progenitor cells in the secondary hair germ repopulate the bulge and re-express bulge cell markers. These findings support the notion that keratinocytes can "dedifferentiate" to a stem cell state in response to wounding, perhaps related to signals from the stem cell niche. Finally, we also present evidence that quiescent bulge cells undergo apoptosis during follicle remodeling in catagen, indicating that a subpopulation of bulge cells is not permanent.  相似文献   
132.
ADP-ribose pyrophosphatase (ADPRase), a member of the nudix protein family, catalyzes the hydrolysis of ADP-ribose to AMP and ribose 5'-phosphate. We have determined the crystal structure of ADPRase from Thermus thermophilus HB8 (TtADPRase). We performed kinetic analysis of mutants of TtADPRase to elucidate the substrate recognition and the catalytic mechanism. Our results suggest that interactions responsible for the substrate recognition are located at the terminal moieties of the substrate. The adenine moiety is recognized by Ile-19 and the main chain carbonyl group of Glu-29 and/or Gly-104. The terminal ribose moiety is recognized by the sum of some weak interactions with multiple residues that are close in space. Glu-82 and Glu-86, conserved in the nudix motif, were previously shown to be essential for catalysis. Mutation of these residues shows that the dependence of kcat on pH is almost the same as that of the wild-type enzyme. Results suggest that Glu-82 and Glu-86 are essential for catalysis but unlikely to act as a catalytic base. In the crystal structure, each acidic residue coordinates with a metal ion. Furthermore, a water molecule coordinates between these two metals. Our results suggest a two-metal ion mechanism for the catalysis of ADPRase in which a water molecule is activated to act as a nucleophile by the cations coordinated by Glu-82 and Glu-86. Arg-54, Glu-70, Arg-81, and Glu-85 are predicted to support this nucleophilic attack on the alpha-phosphate of the substrate. Interestingly, ADPRase displays differences in the substrate recognition and the catalytic mechanism from the models proposed for other nudix proteins. Our results highlight the diversity within the nudix protein family in terms of substrate recognition and catalysis.  相似文献   
133.
Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells   总被引:3,自引:0,他引:3  
Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (rho(0)) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties.  相似文献   
134.
135.
To determine whether the increase in glucose uptake following AMP-activated protein kinase (AMPK) activation in adipocytes is mediated by accelerated GLUT4 translocation into plasma membrane, we constructed a chimera between GLUT4 and enhanced green fluorescent protein (GLUT4-eGFP) and transferred its cDNA into the nucleus of 3T3-L1 adipocytes. Then, the dynamics of GLUT4-eGFP translocation were visualized in living cells by means of laser scanning confocal microscopy. It was revealed that the stimulation with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and 2,4-dinitrophenol (DNP), known activators of AMPK, promptly accelerates its translocation within 4 min, as was found in the case of insulin stimulation. The insulin-induced GLUT4 translocation was markedly inhibited after addition of wortmannin (P < 0.01). However, the GLUT4 translocation through AMPK activators AICAR and DNP was not affected by wortmannin. Insulin- and AMPK-activated translocation of GLUT4 was not inhibited by SB-203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). Glucose uptake was significantly increased after addition of AMPK activators AICAR and DNP (P < 0.05). AMPK- and insulin-stimulated glucose uptake were similarly suppressed by wortmannin (P < 0.05-0.01). In addition, SB-203580 also significantly prevented the enhancement of glucose uptake induced by AMPK and insulin (P < 0.05). These results suggest that AMPK-activated GLUT4 translocation in 3T3-L1 adipocytes is mediated through the insulin-signaling pathway distal to the site of activated phosphatidylinositol 3-kinase or through a signaling system distinct from that activated by insulin. On the other hand, the increase of glucose uptake dependent on AMPK activators AICAR and DNP would be additionally due to enhancement of the intrinsic activity in translocated GLUT4 protein, possibly through a p38 MAPK-dependent mechanism.  相似文献   
136.
137.
Mammalian chromosomes consist of multiple replicons; however, in contrast to yeast, the details of this replication process (origin firing, fork progression and termination) relative to specific chromosomal domains remain unclear. Using direct visualization of DNA fibers, here we show that the rate of replication fork movement typically decreases in the early-mid S phase when the replication fork proceeds through the R/G chromosomal band boundary and pericentromeric heterochromatin. To support this, fluorescence in situ hybridization (FISH)-based replication profiles at the human 1q31.1 (R-band)-32.1 (G-band) regions revealed that replication timing switched around at the putative R/G chromosomal band boundary predicted by marked changes in GC content at the sequence level. Thus, the slowdown of replication fork movement is thought to be the general property of the band boundaries separating the functionally different chromosomal domains. By simultaneous visualization of replication fork movement and pericentromeric heterochromatin sequences on DNA fibers, we observed that this region is duplicated by many replication forks, some of which proceed unidirectionally, that originate from clustered replication origins. We showed that histone hyperacetylation is tightly associated with changes in the replication timing of pericentromeric heterochromatin induced by 5-aza-2'-deoxycytidine treatment. These results suggest that, similar to the yeast system, histone modification is involved in controlling the timing of origin firing in mammals.  相似文献   
138.
Streptococcus intermedius causes endogenous infections leading to abscesses. This species produces intermedilysin (ILY), a human-specific cytolysin. Because of the significant correlation between higher ILY production levels by S. intermedius and deep-seated abscesses, we constructed ily knockout mutant UNS38 B3 and complementation strain UNS38 B3R1 in order to investigate the role of ILY in deep-seated infections. Strain UNS38 reduced the viability of human liver cell line HepG2 at infection but not of rat liver cell line BRL3A. Isogenic mutant strain UNS38 B3 was not cytotoxic in either cell line. Quantification of S. intermedius revealed that in infected HepG2 cells UNS38 but not UNS38 B3 increased intracellularly concomitantly with increasing cell damage. This difference between UNS38 and UNS38 B3 was not observed with UNS38 B3R1. Invasion and proliferation in BRL3A cells was not observed. Masking UNS38 or UNS38 B3R1 with ILY antibody drastically decreased adherence and invasion of HepG2. Moreover, coating strain UNS38 B3 with ILY partially restored adherence to HepG2 but without subsequent bacterial growth. At 1 day post-infection, many intact UNS38 were detected in the damaged phagosomes of HepG2 with bacterial proliferation observed in the cytoplasm of dead HepG2 after an additional 2 day incubation. These results indicate that surface-bound ILY on S. intermedius is an important factor for invasion of human cells by this bacterium and that secretion of ILY within host cells is essential for subsequent host cell death. These data strongly implicate ILY as an important factor in the pathogenesis of abscesses in vivo by this streptococcus.  相似文献   
139.
We have previously reported that erythropoiesis commences in the liver and spleen after malarial infection, and that newly generated erythrocytes in the liver are essential for infection of malarial parasites as well as continuation of infection. At this time, erythropoietin (EPO) is elevated in the serum. In the present study, we administered EPO or anti-EPO antibody into C57BL/6 (B6) mice to modulate the serum level of EPO. When mice were infected with a non-lethal strain (17NXL) of Plasmodium yoelii (blood-stage infection of 10(4) parasitized erythrocytes per mouse), parasitemia continued for 1 month, showing a peak at day 17. Daily injection of EPO (200 IU/day per mouse) from day five to day 14 prolonged parasitemia, whereas injection of anti-EPO antibody (1.5 mg/day per mouse) every second day from day five to day 28 decreased it. Erythropoiesis was confirmed in the liver, spleen and bone marrow by the appearance of nucleated erythrocytes (TER119+). When anti-EPO antibody was injected by the same protocol into mice infected with a lethal strain (17XL) of P. yoelii, all mice showed decreased parasitemia and recovered from the infection. These results suggest that the use of anti-EPO antibody after malarial infection may be of therapeutic value in severe cases of malaria.  相似文献   
140.
Abnormal prion protein (PrP(Sc)) plays a central role in the transmission of prion diseases, but the molecular basis of prion strains with distinct biological characteristics remains to be elucidated. We analyzed the characteristics of prion disease by using mice inoculated with the Chandler and Fukuoka-1 strains propagated in a cultured mouse neuronal cell line, GT1-7, which is highly permissive to replication of the infectious agents. Strain-specific biological characteristics, including clinical manifestations, incubation period as related to the infectious unit, and pathological profiles, remained unchanged after passages in the cell cultures. We noted some differences in the biochemical aspects of PrP(Sc) between brain tissues and GT1-7 cells which were unlikely to affect the strain phenotypes. On the other hand, the proteinase K-resistant PrP core fragments derived from Fukuoka-1-infected tissues and cells were slightly larger than those from Chandler-infected versions. Moreover, Fukuoka-1 infection, but not Chandler infection, gave an extra fragment with a low molecular weight, approximately 13 kDa, in both brain tissues and GT1-7 cells. This cell culture model persistently infected with different strains will provide a new insight into the understanding of the molecular basis of prion diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号