首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7632篇
  免费   509篇
  国内免费   1篇
  8142篇
  2022年   39篇
  2021年   59篇
  2019年   64篇
  2018年   76篇
  2017年   54篇
  2016年   84篇
  2015年   140篇
  2014年   198篇
  2013年   517篇
  2012年   294篇
  2011年   283篇
  2010年   184篇
  2009年   182篇
  2008年   295篇
  2007年   348篇
  2006年   308篇
  2005年   321篇
  2004年   341篇
  2003年   281篇
  2002年   330篇
  2001年   282篇
  2000年   332篇
  1999年   275篇
  1998年   98篇
  1997年   81篇
  1996年   54篇
  1995年   83篇
  1994年   74篇
  1993年   69篇
  1992年   179篇
  1991年   229篇
  1990年   174篇
  1989年   171篇
  1988年   192篇
  1987年   166篇
  1986年   145篇
  1985年   136篇
  1984年   107篇
  1983年   82篇
  1982年   63篇
  1981年   70篇
  1980年   57篇
  1979年   75篇
  1978年   70篇
  1977年   47篇
  1976年   42篇
  1975年   44篇
  1974年   41篇
  1973年   45篇
  1972年   38篇
排序方式: 共有8142条查询结果,搜索用时 15 毫秒
101.
Human myosin VIIA (HM7A) is responsible for human Usher syndrome type 1B, which causes hearing and visual loss in humans. Here we studied the regulation of HM7A. The actin-activated ATPase activity of full-length HM7A (HM7AFull) was lower than that of tail-truncated HM7A (HM7AΔTail). Deletion of the C-terminal 40 amino acids and mutation of the basic residues in this region (R2176A or K2179A) abolished the inhibition. Electron microscopy revealed that HM7AFull is a monomer in which the tail domain bends back toward the head-neck domain to form a compact structure. This compact structure is extended at high ionic strength or in the presence of Ca2+. Although myosin VIIA has five isoleucine-glutamine (IQ) motifs, the neck length seems to be shorter than the expected length of five bound calmodulins. Supporting this observation, the IQ domain bound only three calmodulins in Ca2+, and the first IQ motif failed to bind calmodulin in EGTA. These results suggest that the unique IQ domain of HM7A is important for the tail-neck interaction and, therefore, regulation. Cellular studies revealed that dimer formation of HM7A is critical for its translocation to filopodial tips and that the tail domain (HM7ATail) markedly reduced the filopodial tip localization of the HM7AΔTail dimer, suggesting that the tail-inhibition mechanism is operating in vivo. The translocation of the HM7AFull dimer was significantly less than that of the HM7AΔTail dimer, and R2176A/R2179A mutation rescued the filopodial tip translocation. These results suggest that HM7A can transport its cargo molecules, such as USH1 proteins, upon release of the tail-dependent inhibition.  相似文献   
102.
Personalized medicine allows the selection of treatments best suited to an individual patient and disease phenotype. To implement personalized medicine, effective tests predictive of response to treatment or susceptibility to adverse events are needed, and to develop a personalized medicine test, both high quality samples and reliable data are required. We review key features of state-of-the-art proteomic profiling and introduce further analytic developments to build a proteomic toolkit for use in personalized medicine approaches. The combination of novel analytical approaches in proteomic data generation, alignment and comparison permit translation of identified biomarkers into practical assays. We further propose an expanded statistical analysis to understand the sources of variability between individuals in terms of both protein expression and clinical variables and utilize this understanding in a predictive test.  相似文献   
103.
Nishida T  Orikasa Y  Ito Y  Yu R  Yamada A  Watanabe K  Okuyama H 《FEBS letters》2006,580(11):2731-2735
The colony-forming ability of Escherichia coli genetically engineered to produce eicosapentaenoic acid (EPA) grown in 3mM hydrogen peroxide (H(2)O(2)) was similar to that of untreated cells. It was rapidly lost in the absence of EPA. H(2)O(2)-induced protein carbonylation was enhanced in cells lacking EPA. The fatty acid composition of the transformants was unaffected by H(2)O(2) treatment, but the amount of fatty acids decreased in cultures of cells lacking EPA and increased in cultures of cells producing EPA, suggesting that cellular EPA is stable in the presence of H(2)O(2) in vivo and may protect cells directly against oxidative damage. We discuss the possible role of EPA in partially blocking the penetration of H(2)O(2) into cells through membranes containing EPA.  相似文献   
104.
Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin‐A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with β‐galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin‐A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon‐target interactions. In the presence of ephrin‐A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin‐A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin‐A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   
105.
Glycosaminoglycans (GAGs) like chondroitin sulfate (CS) and heparan sulfate (HS) are synthesized on the tetrasaccharide linkage region, GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser, of proteoglycans. The Xyl can be modified by 2-O-phosphate in both CS and HS, whereas the Gal residues can be sulfated at C-4 and/or C-6 in CS but not in HS. To study the roles of these modifications, monoclonal antibodies were developed against linkage glycopeptides of shark cartilage CS proteoglycans, and one was characterized in detail. This antibody bound hexa- and pentasaccharide-peptides more strongly than unsaturated tetrasaccharide-peptides with the unnatural fourth sugar residue (unsaturated hexuronic acid), suggesting the importance of the fifth and/or fourth saccharide residue GalNAc-5 and/or GlcA-4. Its reactivity was not affected by treatment with chondro-4-sulfatase or alkaline phosphatase, suggesting that 4-O-sulfate on the Gal residues and 2-O-phosphate on the Xyl residue were not recognized. Treatment with weak alkali to cleave the Xyl-Ser linkage completely abolished the binding activity, suggesting the importance of the peptide moiety of the hexasaccharide-peptide for the binding. Based on the amino acid composition and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses, it was revealed that the peptide moiety is composed of four amino acids, Ser, Pro, Gly, and Glu. Furthermore, the antibody stained wild-type CHO cells significantly, but much weakly mutant cells deficient in xylosyl- or galactosyltransferase-I required for the biosynthesis of the linkage region. These results suggest that the antibody recognizes the structure GalNAc(±6-O-sulfate)-GlcA-Gal-Gal-Xyl-Ser-(Pro, Gly, Glu). The antibody will be a useful tool for investigating the significance of the linkage region in the biosynthesis and/or intracellular transport of different GAG chains especially since such tools to study the linkage region are lacking.  相似文献   
106.
Herpes simplex virus type 2 (HSV-2) induces acute local infection followed by latent infection in the nervous system and often leads to the development of lethal encephalitis in immunocompromised hosts. The mechanisms of immune protection against lethal HSV-2 infection, however, have not been clarified. In this study, we examined the roles of Fas-Fas ligand (FasL) signaling in lethal infection with HSV-2 by using mice with mutated Fas (lpr) or FasL (gld) in C57BL/6 background. Both lpr and gld mice exhibited higher mortality than wild-type (WT) C57BL/6 mice after infection with virulent HSV-2 strain 186 and showed significantly increased viral titers in the spinal cord compared with WT mice 9 days after infection, just before the mice started to die. There were no differences in the numbers of CD4+ and CD8+ T cells infiltrated in the spinal cord or in the levels of HSV-2-specific gamma interferon produced by those cells in a comparison of lpr and WT mice 9 days after infection. Adoptive transfer studies demonstrated that CD4+ T cells from WT mice protected gld mice from lethal infection by HSV-2. Furthermore, CD4+ T cells infiltrated in the spinal cord of HSV-2-infected WT mice expressed functional FasL that induced apoptosis of Fas-expressing target cells in vitro. These results suggest that FasL-mediated cytotoxic activity of CD4+ T cells plays an important role in host defense against lethal infection with HSV-2.Fas-Fas ligand (FasL) signaling-induced apoptotic cell death has pleiotropic roles in T-cell-mediated host defense mechanisms. First, Fas and FasL are expressed on activated T cells and thereby limit their number by inducing suicide or fratricide. It is generally accepted that Fas-mediated activation-induced cell death plays a predominant role during chronic infection, whereas starvation-induced cell death mediated by the proapoptotic BH3-only subgroup of the Bcl-2 protein family is the main mechanism for T-cell death during termination of immune responses in acute infection (30). Fas-FasL signaling might also play a role in T-cell development, as suggested by an accumulation of T-cell receptor αβ-positive (TCR αβ+) CD4 CD8 T cells expressing B220 in lymphoid organs of mice with mutated Fas (lpr) or FasL (gld) although the origin and functions of such double-negative T cells are still a matter of debate (21). Lastly, Fas-FasL interaction can be directly involved in host defense by inducing apoptosis of infected cells to facilitate pathogen clearance (23). Therefore, the roles of Fas-FasL signaling in immune responses for host defense might vary depending on the pathogen.Herpes simplex virus type 2 (HSV-2) is an alphaherpesvirus that causes genital herpes, the most common viral sexually transmitted disease (29). After initial infection in the vaginal epithelium, HSV-2 invades local nerve termini, travels via retrograde axonal transport to neuronal cell bodies in sensory ganglia, and establishes latent infection (13). However, especially in neonates and immunocompromised hosts, HSV-2 can cause lethal central nervous system (CNS) infection, which indicates the importance of immune systems in limiting the pathogenicity of HSV-2. Immune responses against HSV-2 have been studied in various murine models using different strains of virus and routes of inoculation, with or without vaccination with an attenuated strain of HSV-2. In such vaccination models, CD4+ T cells producing gamma interferon (IFN-γ) predominantly conferred protection against challenge with a virulent strain of HSV-2 (11, 19), whereas various subsets of lymphocytes, including NK cells, NK T cells, and TCR γδ T cells as well as CD4+ T cells were reported to be involved in host defense against primary infection with virulent HSV-2 (3, 15, 24), in which IFN-γ also played an important role (9). Fas-FasL signaling was shown to be dispensable for the clearance of an attenuated strain of HSV-2, which lacks thymidine kinase and causes only transient mild vaginal pathologies but not neurologic diseases (6, 16). Similarly Fas-mediated apoptosis was not involved in the vaccination effect of the attenuated HSV-2 (11). However, the roles of Fas-FasL signaling in host defense against a virulent strain of HSV-2 have not been clarified.In this study, we examined the roles of Fas-FasL signaling in a murine model of HSV-2 infection by using a highly virulent HSV-2 strain 186 with lpr and gld mice. We found that FasL-Fas signaling plays an important role in host defense against lethal HSV-2 infection.  相似文献   
107.
Various studies have attempted to unravel the physiological role of metastin/kisspeptin in the control of gonadotropin-releasing hormone (GnRH) release. A number of evidences suggested that the population of metastin/kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) is involved in generating a GnRH surge to induce ovulation in rodents, and thus the target of estrogen positive feedback. Females have an obvious metastin/kisspeptin neuronal population in the AVPV, but males have only a few cell bodies in the nucleus, suggesting that the absence of the surge-generating mechanism or positive feedback action in males is due to the limited AVPV metastin/kisspeptin neuronal population. On the other hand, the arcuate nucleus (ARC) metastin/kisspeptin neuronal population is considered to be involved in the regulation of tonic GnRH release. The ARC metastin/kisspeptin neurons show no sex difference in their expression, which is suppressed by gonadal steroids in both sexes. Thus, the ARC population of metastin/kisspeptin neurons is a target of estrogen negative feedback action on tonic GnRH release. The lactating rat model provided further evidence indicating that ARC metastin/kisspeptin neurons are involved in GnRH pulse generation, because pulsatile release of luteinizing hormone (LH) is profoundly suppressed by suckling stimulus and the LH pulse suppression is well associated with the suppression of ARC metastin/kisspeptin and KiSS-1 gene expression in lactating rats.  相似文献   
108.
109.
4-Bromo-3,4-dimethyl-1-phenyl-2-phospholene 1-oxide (3c) was first synthesized from 3,4-dimethyl-1-phenyl-2-phospholene 1-oxide (2c) by a bromo-radical substitution reaction occurred at C-4 position by N-bromosuccinimide and 2,2′-azobisisobutyronitrile. The novel phospha sugar analogue 3c exerted high anti-proliferative effect on U937 cells evaluated by MTT in vitro methods and was much more efficient than that of Gleevec®, which is known as a molecule targeting chemotherapeutical agent. The substitution of 2-phospholenes at C-3 and C-4 position with methyl groups as well as 4-bromo substituent suggests a good anti-proliferative effect.  相似文献   
110.
The subcellular distribution of the elastase in human myeloid leukemia HL-60 cells was studied in comparison with that in normal leukocytes. On differential centrifugation, most of the elastase activity of HL-60 cell lysates was recovered in the 105,000 x g supernatant, while that of human peripheral blood leukocyte lysates was recovered in the 500 x g precipitate (azurophil granule-rich fraction). Moreover, on Percoll density gradient centrifugation, the elastase activity in HL-60 cell extracts was recovered in the lightest fraction with none in the azurophil granule-rich fractions, whereas most of the activity in leukocyte extracts was recovered in the azurophil granule-rich fractions. This subcellular localization of elastase did not change when HL-60 cells differentiated into monocytes and granulocytes by induction with 12-O-tetradecanoyl phorbol-13-acetate and retinoic acid, respectively. Furthermore, on Sephadex G-75 gel filtration, the elastase activity in HL-60 cell extracts was eluted earlier than that in leukocyte extracts. The size estimation indicated that the elastase of HL-60 cells was 36-30 kDa, corresponding to the size of an elastase precursor reported. The relevance of a large form of the elastase in HL-60 cells to its subcellular localization is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号