首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   17篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   17篇
  2014年   24篇
  2013年   20篇
  2012年   29篇
  2011年   24篇
  2010年   15篇
  2009年   19篇
  2008年   32篇
  2007年   27篇
  2006年   27篇
  2005年   31篇
  2004年   32篇
  2003年   25篇
  2002年   25篇
  2001年   9篇
  2000年   18篇
  1999年   7篇
  1998年   10篇
  1997年   10篇
  1996年   2篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   2篇
  1973年   1篇
  1971年   2篇
  1969年   3篇
  1968年   2篇
  1967年   5篇
排序方式: 共有497条查询结果,搜索用时 562 毫秒
111.
RNA aptamers against bovine prion protein (bPrP) were obtained, most of the obtained aptamers being found to contain the r(GGAGGAGGAGGA) (R12) sequence. Then, it was revealed that R12 binds to both bPrP and its β-isoform with high affinity. Here, we present the structure of R12. This is the first report on the structure of an RNA aptamer against prion protein. R12 forms an intramolecular parallel quadruplex. The quadruplex contains G:G:G:G tetrad and G(:A):G:G(:A):G hexad planes. Two quadruplexes form a dimer through intermolecular hexad–hexad stacking. Two lysine clusters of bPrP have been identified as binding sites for R12. The electrostatic interaction between the uniquely arranged phosphate groups of R12 and the lysine clusters is suggested to be responsible for the affinity of R12 to bPrP. The stacking interaction between the G:G:G:G tetrad planes and tryptophan residues may also contribute to the affinity. One R12 dimer molecule is supposed to simultaneously bind the two lysine clusters of one bPrP molecule, resulting in even higher affinity. The atomic coordinates of R12 would be useful for the development of R12 as a therapeutic agent against prion diseases and Alzheimer''s disease.  相似文献   
112.
N,N-Dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzocyclohepten-8-yl]carbonyl]amino]benzyl]tetrahydro-2H-pyran-4-aminium chloride (TAK779) is a potent and selective non-peptide CCR5 antagonist. To use a site-specifically labeled form as a molecular probe, TAK779 containing 13C at positions C19, 35, and 36 was produced. A commercially available [13C]-methyl iodide was employed for the labeling. Starting from a known carboxylic acid segment containing no labeled carbon, the labeled TAK779 was constructed by the successive coupling of [13C]-labeled tolyl boronic ester by the Suzuki–Miyaura reaction and a [13C]-labeled aniline segment by amide bond formation.  相似文献   
113.

Background

Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR) activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro.

Methods

Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848) in the presence or absence of hydrogen peroxide (H2O2). Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed.

Results

Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H2O2 (p < 0.01), and N-acetyl-L-cysteine reversed this potentiation. The combination of H2O2 and R848 significantly potentiated NF-kB phosphorylation and IkBα degradation. The H2O2-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were not affected by H2O2.

Conclusion

TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.  相似文献   
114.
To investigate the effects of respiration defects on the disease phenotypes, we generated trans-mitochondrial mice (mito-mice) by introducing a mutated G13997A mtDNA, which specifically induces respiratory complex I defects and metastatic potentials in mouse tumor cells. First, we obtained ES cells and chimeric mice containing the G13997A mtDNA, and then we generated mito-mice carrying the G13997A mtDNA via its female germ line transmission. The three-month-old mito-mice showed complex I defects and lactate overproduction, but showed no other phenotypes related to mitochondrial diseases or tumor formation, suggesting that aging or additional nuclear abnormalities are required for expression of other phenotypes.  相似文献   
115.
Gold nanorods exhibit strong absorbance of light in the near infrared region, which penetrates deeply into tissues. Since the absorbed light energy is converted into heat, gold nanorods are expected to act as a contrast agent for in vivo bioimaging and as a thermal converter for photothermal therapy. To construct a gold nanorod targeted delivery system for tumor a peptide substrate for urokinase-type plasminogen activator (uPA), expressed specifically on malignant tumors, was inserted between the PEG chain and the surface of the gold nanorods. In other words, we constructed PEG–peptide-modified gold nanorods. After mixing the gold nanorods with uPA, the PEG chain was released from the surface of the gold and subsequently nanorod aggregation took place. The formation of the aggregation was monitored as a decrease in light absorption at 900 nm. Tumor homogenate induced a significant decrease in this absorption. Larger amount of the PEG–peptide-modified gold nanorods bound to cells expressing uPA in vitro compared with control gold nanorods, which had scrambled sequence of the peptide. The PEG–peptide-modified gold nanorods showed higher accumulation in tumor than the control after they were injected intravenously into tumor-bearing mice, however, the density of the peptide on the surface of the gold nanorods was a key factor of their biodistributions. This targeted delivery system, which responds to uPA activity, is expected to be a powerful tool for tumor bioimaging and photothermal tumor therapy.  相似文献   
116.
Autism is a highly variable brain developmental disorder and has a strong genetic basis. Pax6 is a pivotal player in brain development and maintenance. It is expressed in embryonic and adult neural stem cells, in astrocytes in the entire central nervous system, and in neurons in the olfactory bulb, amygdala, thalamus, and cerebellum, functioning in highly context-dependent manners. We have recently reported that Pax6 heterozygous mutant (rSey(2)/+) rats with a spontaneous mutation in the Pax6 gene, show impaired prepulse inhibition (PPI). In the present study, we further examined behaviors of rSey(2)/+ rats and revealed that they exhibited abnormality in social interaction (more aggression and withdrawal) in addition to impairment in rearing activity and in fear-conditioned memory. Ultrasonic vocalization (USV) in rSey(2)+ rat pups was normal in male but abnormal in female. Moreover, treatment with clozapine successfully recovered the defects in sensorimotor gating function, but not in fear-conditioned memory. Taken together with our prior human genetic data and results in other literatures, rSey(2)/+ rats likely have some phenotypic components of autism.  相似文献   
117.
Few reports show whether a high‐fat (HF) dietary environment in the fetal period affects immune function or the development of lifestyle‐related disease at maturity. We examined the influence of an HF dietary environment in the fetal period on postnatal metabolic and immune function. A total of 16 pregnant mice were given control (CON) diet and 16 were given HF diet in the gestational period, from mating to delivery. After delivery lactating mice were given either CON or HF diet, resulting in four groups. After weaning, the offspring mice were given the same diet that their mothers received during lactation. HF dietary intake in the postnatal period increased fat pad weights, serum glucose, and leptin levels. An HF diet in the fetal period resulted in fewer splenic lymphocytes, a thinner thymic cortex, and impaired antigen‐specific immune reactions. Furthermore, tumor necrosis factor (TNF)‐α production and serum triglyceride levels were elevated in the fetal HF group. In addition, the HF‐HF group showed a consistent decrease in ovalbumin (OVA)‐specific IgG and elevation of IgE, associated with advanced fatty changes in the liver. Results from this study suggest that HF environment during the fetal period induces epigenetic propensity toward obesity and immunological burden in part due to increased adipose tissue mass, significant reduction in the number of immune cells and decreased activities of immune cells.  相似文献   
118.
119.
To determine the pathogenicities of mutated mtDNAs in patients with respiration defects, the possible involvement of nuclear DNA mutations has to be excluded, since respiratory function is controlled by both nuclear DNA and mtDNA. This was achieved by showing that the mutated mtDNAs and respiration defects were co-transferred from patients to mtDNA-less human cells, and the resultant cybrid clones carrying mutated mtDNAs expressed respiration defects. To decide whether the cybrid clones expressed respiration defects, in this study the lowest limits of normal respiratory function were evaluated by transfer of mtDNAs from 54 normal subjects to mtDNA-less HeLa cells. The resultant cybrid clones showed that 71% respiratory function was the lowest limit of mtDNAs from normal subjects. On the other hand, cybrid clones carrying pathogenic mtDNAs from patients with mitochondrial diseases showed 0-64% respiratory function, suggesting that less than 71% respiratory function in cybrid clones should be a reliable indicator of whether the mutated mtDNAs of the patients were pathogenic.  相似文献   
120.
Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号