首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   62篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   14篇
  2014年   15篇
  2013年   25篇
  2012年   35篇
  2011年   41篇
  2010年   26篇
  2009年   18篇
  2008年   21篇
  2007年   47篇
  2006年   32篇
  2005年   39篇
  2004年   31篇
  2003年   28篇
  2002年   31篇
  2001年   30篇
  2000年   19篇
  1999年   16篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   9篇
  1993年   4篇
  1992年   18篇
  1991年   12篇
  1990年   21篇
  1989年   8篇
  1988年   14篇
  1987年   13篇
  1986年   6篇
  1985年   12篇
  1984年   12篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1979年   6篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1973年   6篇
  1972年   6篇
  1970年   7篇
  1969年   4篇
  1966年   3篇
排序方式: 共有736条查询结果,搜索用时 15 毫秒
651.
Mechanical ventilation has been demonstrated to exacerbate lung injury, and a sufficiently high tidal volume can induce injury in otherwise healthy lungs. However, it remains controversial whether injurious ventilation per se, without preceding lung injury, can initiate cytokine-mediated pulmonary inflammation. To address this, we developed an in vivo mouse model of acute lung injury produced by high tidal volume (Vt) ventilation. Anesthetized C57BL6 mice were ventilated at high Vt (34.5 +/- 2.9 ml/kg, mean +/- SD) for a duration of 156 +/- 17 min until mean blood pressure fell below 45 mmHg (series 1); high Vt for 120 min (series 2); or low Vt (8.8 +/- 0.5 ml/kg) for 120 or 180 min (series 3). High Vt produced progressive lung injury with a decrease in respiratory system compliance, increase in protein concentration in lung lavage fluid, and lung pathology showing hyaline membrane formation. High-Vt ventilation was associated with increased TNF-alpha in lung lavage fluid at the early stage of injury (series 2) but not the later stage (series 1). In contrast, lavage fluid macrophage inflammatory protein-2 (MIP-2) was increased in all high-Vt animals. Lavage fluid from high-Vt animals contained bioactive TNF-alpha by WEHI bioassay. Low-Vt ventilation induced minimal changes in physiology and pathology with negligible TNF-alpha and MIP-2 proteins and TNF-alpha bioactivity. These results demonstrate that high-Vt ventilation in the absence of underlying injury induces intrapulmonary TNF-alpha and MIP-2 expression in mice. The apparently transient nature of TNF-alpha upregulation may help explain previous controversy regarding the involvement of cytokines in ventilator-induced lung injury.  相似文献   
652.
653.
Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (small lipophilic hormone) that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum. Recent studies have revealed that DIF-1 inhibits growth and induces the differentiation of mammalian tumor cells. The present study examines the effects of DIF-1 on rat cortical neurons in primary culture. We found that DIF-1 induced rapid neuronal cell death. The release of lactate dehydrogenase (LDH), as an indicator of cell death, increased dose-dependently with DIF-1. The release of LDH was inhibited by the N-methyl-D-aspartate (NMDA) receptor antagonists MK801 and AP5, suggesting that the NMDA receptor is involved in the induction of cell death by DIF-1. However, glutamate cytotoxicity could not explain the entire action of DIF-1 on neurons because the estimated concentration of glutamate around DIF-1-treated neurons was below 50 microM and DIF-1 caused more severe cell death than 500 microM glutamate. We discovered that another portion of DIF-1 cytotoxicity is independent of the NMDA receptor; that is, coaddition of DIF-1 and MK801 induced dendritic beading and increased expression of the immediate early genes c-fos and zif/268. These results indicate that DIF-1 induces rapid cell death via both NMDA receptor-dependent and -independent pathways in rat cortical neurons.  相似文献   
654.
The present study demonstrates the effectiveness of X-ray radiation in strain improvement for defective lipase production by Bacillus sp. MR10 for further application in the fermentative production of manno-oligosaccharides (MOS) from agricultural by-product, defatted copra meal (DCM). The mutants obtained were screened based on their defective lipase activity together with their β-mannanase production performance. Among 10 selected mutants, the strain M7 was the highest promising mutant regarding the smallest lipase activity (0.05 U/ml) and the retained β-mannanase activity similar to the parental strain (22 U/ml) were detected. The mutant M7 effectively hydrolyzed DCM to MOS with low-degree of polymerization (DP) oligomers including mannotriose (M3), mannotetraose (M4), and mannopentose (M5) as the main products. Although the pattern of DCM hydrolysis products of mutant M7 was distinctly different from wild type, the biochemical and catalytic properties of purified β-mannanase of mutant were similar to those of wild type. Both purified β-mannanases with apparent molecular mass of 38?kDa displayed optimal activity at pH 5–7 and 45–55°C. Co2+ and Hg2+ nearly completely inhibited activities of both enzymes, whereas Ba2+, Fe3+, and 2-mercaptoethanol obviously activated enzyme activities. Both enzymes showed high specificity for locust bean gum, konjac mannan, DCM, and guar gum. Thus, the mutant M7 has a potential for commercial production of high-quality MOS from low-cost DCM for further application in the feed industry.  相似文献   
655.
In Saccharomyces cerevisiae, telomere replication occurs in late S phase and is accompanied by dynamic remodeling of its protein components. Here, we show that MRX (Mre11-Rad50-Xrs2), an evolutionarily conserved protein complex involved in DNA double-strand break (DSB) repair, is recruited to the telomeres in late S phase. MRX is required for the late S phase-specific recruitment of ATR-like kinase Mec1 to the telomeres. Mec1, in turn, contributes to the assembly of the telomerase regulators Cdc13 and Est1 at the telomere ends. Our results provide a model for the hierarchical assembly of telomere-replication proteins in late S phase; this involves triggering by the loading of MRX onto the chromosome termini. The recruitment of DNA repair-related proteins to the telomeres at particular times in the cell cycle suggests that the normal terminus of a chromosome is recognized as a DSB during the course of replication.  相似文献   
656.
S-adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine (AdoHcy) to form adenosine and homocysteine. The crystal structure of the K185N mutated enzyme, which has weak catalytic activity (0.1%), has been determined at 2.8 A resolution and supports the previously predicted mechanism [Takata, Y., Yamada, T., Huang, Y., Komoto, J., Gomi, T., Ogawa, H., Fujioka, M., & Takusagawa, F. (2002). Catalytic mechanism of S-adenosylhomocysteine hydrolase. Site-directed mutagenesis of Asp-130, Lys-185, Asp-189, and Asn-190. J. Biol. Chem. 277, 22670-22676]. The mutated enzyme has an intermediate structure between the open and closed conformation, observed in the substrate-free enzyme and in the inhibitor complexes, respectively. H54, H300, and H352 were mutated to asparagine, respectively, to identify the roles of the histidine residues in catalysis. The kinetic data of H54N, H300N, and H354N mutated enzymes suggest that H54 is the amino acid residue that acts as a general acid/base to cleave the C5'-S(D) bond of AdoHcy. The E155Q mutated enzyme retained a large portion of the catalytic activity (31%), while the E155D mutated enzyme lost most of it (0.3%). The NADH accumulation measurements of the mutated enzymes indicated that the C3'-oxidation and the C4'-proton abstraction are a concerted event and the C5'-S(D) bond cleavage is an independent event. The C4'-proton exchange measurements indicate that the enzyme has an open conformation when AdoHcy is converted to 3'-keto-4', 5'-dehydro-Ado in the active site. With the results of this study and those of the previous studies, a detailed catalytic mechanism of AdoHcyase is described. K185 facilitates the C3'-oxidation, D130 abstracts the C4'-proton, D189, and E155 act as a communicator between the concerted C3'-oxidation and C4'-proton abstraction, and H54 plays as a general acid to cleave the C5'-S(D) bond of AdoHcy.  相似文献   
657.
658.
659.
Protein kinase B (PKB)/Akt reportedly plays a role in the survival and/or proliferation of cells. We identified a novel protein, which binds to PKB, using a yeast two-hybrid screening system. This association was demonstrated not only in vivo by overexpressing both proteins or by coimmunoprecipitation of the endogenous proteins, but also in vitro using glutathione S-transferase fusion proteins. Importantly, this protein specifically associates with the C terminus of PKB but not with other AGC kinases and enhances PKB phosphorylation and kinase activation without growth factor stimulation. Thus, we termed this Akt-specific binding protein APE (Akt-phosphorylation enhancer). Since APE-induced phosphorylation of PKB did not occur in cells treated with wortmannin or LY294002, APE itself is not a kinase but seems to enhance or prolong the phosphoinositide 3-kinase-dependent phosphorylation of PKB. In cells in which APE was suppressed by small interfering RNA, DNA synthesis was significantly reduced with suppression of PKB phosphorylation, suggesting a synergistic role of APE in PKB-induced proliferation. On the other hand, in cells overexpressing both PKB and APE, despite markedly increased basal phosphorylation of PKB, both DNA rereplication and subsequent Chk2 phosphorylation and apoptosis were seen, suggesting the involvement of APE in the regulation of cell cycling replication licensing. Taking these observations together, APE appears to be a novel regulator of PKB phosphorylation. Furthermore, the interaction between APE and PKB, possibly dependent on the expression levels of both proteins, may be a novel molecular mechanism leading to proliferation and/or apoptosis.  相似文献   
660.
Serofendic acid was recently identified as a neuroprotective factor from fetal calf serum. This study was designed to evaluate the neuroprotective effects of an intranigral microinjection of serofendic acid based on behavioral, neurochemical and histochemical studies in hemi-parkinsonian rats using 6-hydroxydopamine (6-OHDA). Rats were injected with 6-OHDA in the presence or absence of serofendic acid, or were treated with serofendic acid on the same lateral side, at 12, 24 or 72 h after 6-OHDA lesion. Intranigral injection of 6-OHDA alone induced a massive loss of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra pars compacta (SNpc). Either simultaneous or 12 h post-administration of serofendic acid significantly prevented both dopaminergic neurodegeneration and drug-induced rotational asymmetry. Immunoreactivities for oxidative stress markers, such as 3-nitrotyrosine (3-NT) and 4-hydroxy-2-nonenal (4-HNE), were markedly detected in the SNpc of rats injected with 6-OHDA alone. These immunoreactivities were markedly suppressed by the co-administration of serofendic acid, similar to the results in vehicle-treated control rats. In addition, serofendic acid inhibited 6-OHDA-induced alpha-synuclein expression and glial activation in the SNpc. These results suggest that serofendic acid protects against 6-OHDA-induced SNpc dopaminergic neurodegeneration in a rat model of Parkinson's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号