首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6837篇
  免费   366篇
  国内免费   3篇
  2022年   27篇
  2021年   54篇
  2020年   27篇
  2019年   34篇
  2018年   52篇
  2017年   53篇
  2016年   98篇
  2015年   147篇
  2014年   184篇
  2013年   593篇
  2012年   335篇
  2011年   343篇
  2010年   227篇
  2009年   224篇
  2008年   357篇
  2007年   390篇
  2006年   343篇
  2005年   386篇
  2004年   431篇
  2003年   352篇
  2002年   366篇
  2001年   142篇
  2000年   130篇
  1999年   103篇
  1998年   83篇
  1997年   80篇
  1996年   56篇
  1995年   72篇
  1994年   60篇
  1993年   67篇
  1992年   103篇
  1991年   91篇
  1990年   73篇
  1989年   112篇
  1988年   92篇
  1987年   74篇
  1986年   77篇
  1985年   91篇
  1984年   65篇
  1983年   65篇
  1982年   67篇
  1981年   59篇
  1980年   54篇
  1979年   42篇
  1978年   40篇
  1977年   38篇
  1976年   36篇
  1975年   27篇
  1974年   28篇
  1973年   33篇
排序方式: 共有7206条查询结果,搜索用时 15 毫秒
141.
Abstract: In cultured bovine adrenal medullary cells, stimulation of nicotinic receptors by carbachol evoked the Ca2+-dependent exocytotic cosecretion of proadrenomedullin N-terminal 20 peptide (PAMP) (EC50 = 50.1 µ M ) and catecholamines (EC50 = 63.0 µ M ), with the molar ratio of PAMP/catecholamines secreted being equal to the ratio in the cells. Addition of PAMP[1–20]NH2 inhibited carbachol-induced 22Na+ influx via nicotinic receptors (IC50 = 2.5 µ M ) in a noncompetitive manner and thereby reduced carbachol-induced 45Ca2+ influx via voltage-dependent Ca2+ channels (IC50 = 1.0 µ M ) and catecholamine secretion (IC50 = 1.6 µ M ). It did not alter high K+-induced 45Ca2+ influx via voltage-dependent Ca2+ channels or veratridine-induced 22Na+ influx via voltage-dependent Na+ channels. PAMP seems to be a novel antinicotinic peptide cosecreted with catecholamines by a Ca2+-dependent exocytosis in response to nicotinic receptor stimulation.  相似文献   
142.
Yeast cells can respond and adapt to osmotic stress. In our attempt to clarify the molecular mechanisms of cellular responses to osmotic stress, we cloned seven cDNAs for hyperosmolarity-responsive (HOR) genes from Saccharomyces cerevisiae by a differential screening method. Structural analysis of the clones revealed that those designated HOR1, HORS, HOR4, HOR5 and HOR6 encoded glycerol-3-phosphate dehydrogenase (Gpd1p), glucokinase (Glklp), hexose transporter (Hxtlp), heat-shock protein 12 (Hsp12p) and Na+, K+, Li+-ATPase (Enalp), respectively. HOR2 and HOR7 corresponded to novel genes. Gpdlp is a key enzyme in the synthesis of glycerol, which is a major osmoprotectant in S. cerevisiae. Cloning of HOR1/GPD1 as a HOR gene indicates that the accumulation of glycerol in yeast cells under hyperosmotic stress is, at least in part, caused by an increase in the level of GPDH protein. We performed a series of Northern blot analyses using HOR cDNAs as probes and RNAs prepared from cells grown under various conditions and from various mutant cells. The results suggested that all the HOR genes are regulated by common signal transduction pathways. However, the fact that they exhibited certain distinct responses indicated that they might also be regulated by specific pathways in addition to the common pathways. Ca2+ seemed to be involved in the signaling systems. In addition, Hog1p, one of the MAP kinases in yeast, appeared to be involved in the regulation of expression of HOR genes, although its function seemed to be insufficient for the overall regulation of expression of these genes.  相似文献   
143.
Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection.  相似文献   
144.
Takarada, Yudai, Yuichi Hirano, Yusuke Ishige, and NaokataIshii. Stretch-induced enhancement of mechanical power output inhuman multijoint exercise with countermovement. J. Appl. Physiol. 83(5): 1749-1755, 1997.Therelation between the eccentric force developed during a countermovementand the mechanical power output was studied in squatting exercisesunder nominally isotonic load (50% of 1-repetition maximum). Thesubjects (n = 5) performed squattingexercises with a countermovement at varied deceleration rates beforelifting the load. The ground reaction force and video images wererecorded to obtain the power output of the body. Net muscle momentsacting at hip, knee, and ankle joints were calculated from videorecordings by using inverse dynamics. When an intense deceleration wastaken at the end of downward movement, large eccentric force wasdeveloped, and the mechanical power subsequently produced during thelifting movement was consistently larger than that produced without thecountermovement. Both maximal and mean power outputs during concentricactions increased initially with the eccentric force, whereas theybegan to decline when the eccentric force exceeded ~1.4 times the sumof load and body weight. Video-image analysis showed that thischaracteristic relation was predominantly determined by the torquearound the knee joint. Electromyographic analyses showed no consistentincrease in time-averaged integrated electromyograph from vastuslateralis with the power output, suggesting that the enhancement ofpower output is primarily caused by the prestretch-induced improvementof an intrinsic force-generating capability of the agonist muscle.

  相似文献   
145.
Summary The solution structure of a specific DNA complex of the minimum DNA-binding domain of the mouse c-Myb protein was determined by distance geometry calculations using a set of 1732 nuclear Overhauser enhancement (NOE) distance restraints. In order to determine the complex structure independent of the initial guess, we have developed two different procedures for the docking calculation using simulated annealing in four-dimensional space (4D-SA). One is a multiple-step procedure, where the protein and the DNA were first constructed independently by 4D-SA using only the individual intramolecular NOE distance restraints. Here, the initial structure of the protein was a random coil and that of the DNA was a typical B-form duplex. Then, as the starting structure for the next docking procedure, the converged protein and DNA structures were placed in random molecular orientations, separated by 50 Å. The two molecules were docked by 4D-SA utilizing all the restraints, including the additional 66 intermolecular distance restraints. The second procedure comprised a single step, in which a random-coil protein and a typical B-form DNA duplex were first placed 70 Å from each other. Then, using all the intramolecular and intermolecular NOE distance restraints, the complex structure was constructed by 4D-SA. Both procedures yielded the converged complex structures with similar quality and structural divergence, but the multiple-step procedure has much better convergence power than the single-step procedure. A model study of the two procedures was performed to confirm the structural quality, depending upon the number of intermolecular distance restraints, using the X-ray structure of the engrailed homeodomain-DNA complex.Abbreviations rmsd root-mean-square deviation - NOE nuclear Overhauser enhancement - 4D-SA simulated annealing in four-dimensional space - Myb-R2R3 repeats 2 and 3 of the DNA-binding domain of the c-Myb protein - DNA 16 Myb-specific binding DNA duplex with 16 base pairs - IHDD-C residues 3 to 59 of the C-chain of the engrailed homeodomain-DNA complex - DNA11 DNA duplex with base pairs 9 to 19 of the engrailed homeodomain-DNA complex  相似文献   
146.
In order to get an insight into the cellular mechanisms for the integration of the effects of gravity, we investigated the gravitactic behaviour in Paramecium. There are two main categories for the model of the mechanism of gravitaxis; one is derived on the basis of the mechanistic properties of the cell (physical model) and the other of the physiological properties including cellular gravireception (physiological model). In this review article, we criticized the physical models and introduced a new physiological model. Physical models postulated so far can be divided into two; one explaining the negative gravitactic orientation of the cell in terms of the static torque generated by the structural properties of the cell (gravity-buoyancy model by Verworn, 1889 and drag-gravity model by Roberts, 1970), and the other explaining it in terms of the dynamic torque generated by the helical swimming of the cell (propulsion-gravity model by Winet and Jahn, 1974 and lifting-force model by Nowakowska and Grebecki, 1977). Among those we excluded the possibility of dynamic-torque models because of their incorrect theoretical assumptions. According to the passive orientation of Ni(2+)-immobilized cells, the physical effect of the static torque should be inevitable for the gravitactic orientation. Downward orientation of the immobilized cells in the course of floating up in the hyper-density medium demonstrated the gravitactic orientation is not resulted by the nonuniform distribution of cellular mass (gravity-buoyancy model) but by the fore-aft asymmetry of the cell (drag-gravity model). A new model explaining the gravitactic behaviour is derived on the basis of the cellular gravity sensation through mechanoreceptor channels of the cell membrane. Paramecium is known to have depolarizing receptor channels in the anterior and hyperpolarizing receptors in the posterior of the cell. The uneven distribution of the receptor may lead to the bidirectional changes of the membrane potential by the selective deformation of the anterior and posterior cell membrane responding to the orientation of the cell in the gravity field; i.e. negative- and positive-going shift of the potential due to the upward and downward orientation, respectively. The orientation dependent changes in membrane potential with respect to gravity, in combination with the close coupling of the membrane potential and the ciliary locomotor activity, may allow the changes in swimming direction along with those in the helical nature of the swimming path; upward shift of axis of helix by decreasing the pitch angle due to hyperpolarization in the upward-orienting cell, and also the upward shift by increasing the pitch angle due to depolarization in the downward-orienting cell. Computer simulation of the model demonstrated that the cell can swim upward along the "super-helical" trajectory consisting of a small helix winding helically an axis parallel to the gravity vector, after which the model was named as "Super-helix model". Three-dimensional recording of the trajectories of the swimming cells demonstrated that about a quarter of the cell population drew super-helical trajectory under the unbounded, thermal convection-free conditions. In addition, quantitative analysis of the orientation rate of the swimming cell indicated that gravity-dependent orientation of the swimming trajectory could not be explained solely by the physical static torque but complementarily by the physiological mechanism as proposed in the super-helix model.  相似文献   
147.
148.
The karyomorphology of 16 species in 13 genera representing Moraceae and Cecropiaceae was investigated in an effort to contribute to a better understanding of chromosome features and evolution in the families. All genera investigated have similar karyomorphology, but differences are found in (1) chromosome features of Interphase nucleus (simple, simple-complex, or complex chromocenter type), (2) basic chromosome number (x=13 or 14), (3) size variation (mono-or bimodial), and (4) frequencies of chromosomes with median centromeres (m-chromosome) (25–85%) and those with subterminal (or terminal) centromeres (st-chromosome) (14–69%). Comparisons with Ulmaceae as an outgroup of the remainder of Urticales suggest that the simple chromocenter type,x=14 comprising bothm- andst-chromosomes, and the monomodial karyotype are plesiomorphies in Moraceae and Cecropiaceae. Most of Moraceae and Cecropiaceae retain generalized chromosome features of the order, but have involved a few evolutionary changes in karyomorphology. Based on some detailed karyomorphological data, inter- and infrafamilial relationships are also briefly discussed.  相似文献   
149.
Using a plasmid pBsr2 which carries a blasticidin S-resistant gene, we have improved the method of REMI (restriction enzyme-mediated integration) provided for insertional mutagenesis inDictyostelium discoideum (bsr-REMI). To confirm usefulness of thebsr-REMI, transformation efficiency, copy number of integrated DNA, and randomness of integration into genome were examined.  相似文献   
150.
To determine the distribution of beta-2 microglobulin (B2m) alleles in wild mice we have typed mice derived from natural populations in Europe, North Africa, South America, and East Asia. Mus musculus domesticus mice from Germany, France, Italy, and Peru were all B2m a as were most from the United Kingdom. M.m. musculus mice from Denmark and Czechoslovakia, several stocks of M.m. molossinus from Japan, and M.m. castaneus from China, Thailand, and the Philippines were of B2m b type. This is consistent with the notion that C57BL/6 may have obtained some of its genes, including B2m, from Eastern mice. A BgII restriction site characteristic of B2m b was also found in mice from Czechoslovakia and Japan, confirming that B2m b is a naturally occurring allele of B2m. A new type of 2m ( 2mw1) was found in four stocks of M. spretus from Portugal, Spain, and Morocco. This molecule differs in apparent size and charge from the a and b types. 2mw2 was found together with 2 ma in one stock of M.m. domesticus (brevirostris) from Morocco. 2mw3 and 2mw4 were found in a few M. m. bactrianus from Pakistan. In all cases tested, these new 2m molecules associate with class I histocompatibility antigens.Abbreviations used in this paper 2m beta-2 microglobulin - B2m gene for beta-2 microglobulin - IEF isoelectric focusing - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - MHC major histocompatibility complex - T. E. Tris-EDTA buffer  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号