首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5415篇
  免费   232篇
  国内免费   1篇
  2022年   16篇
  2021年   34篇
  2020年   17篇
  2019年   23篇
  2018年   39篇
  2017年   49篇
  2016年   66篇
  2015年   121篇
  2014年   135篇
  2013年   505篇
  2012年   267篇
  2011年   288篇
  2010年   182篇
  2009年   173篇
  2008年   265篇
  2007年   292篇
  2006年   276篇
  2005年   308篇
  2004年   355篇
  2003年   275篇
  2002年   298篇
  2001年   79篇
  2000年   88篇
  1999年   85篇
  1998年   63篇
  1997年   60篇
  1996年   40篇
  1995年   54篇
  1994年   59篇
  1993年   66篇
  1992年   93篇
  1991年   69篇
  1990年   66篇
  1989年   67篇
  1988年   59篇
  1987年   58篇
  1986年   56篇
  1985年   57篇
  1984年   54篇
  1983年   53篇
  1982年   52篇
  1981年   57篇
  1980年   55篇
  1979年   36篇
  1978年   35篇
  1977年   27篇
  1976年   30篇
  1975年   20篇
  1974年   27篇
  1973年   21篇
排序方式: 共有5648条查询结果,搜索用时 210 毫秒
931.
Neoheterobothriumhirame is a blood feeding monogenean of olive flounder Paralichthys olivaceus. The parasite was first reported in the mid-1990s from the Sea of Japan and became epidemic within cultured and wild flounder populations after several years. Infected fish often suffer from severe anaemia and thus the parasite is thought to have played an important role in the recent depletion of flounder populations in some areas of Japan. However, the causal mechanism underlying the parasite epidemic and decreases in host populations is unclear because apparently N. hirame infection is not fatal to the host. Here, we tested the hypothesis that N. hirame indirectly reduces the survival of wild juvenile flounder by altering their behaviour and making them more susceptible to predation. We conducted a series of experiments to compare behaviours and predation susceptibility between experimentally infected juvenile P. olivaceus and uninfected fish. Results showed that N. hirame infection increases the activity level, alters diel activity and has negative effects on burrowing performance and swimming endurance. When juvenile flounder cohabitated with predators, the survival rate of infected juveniles was approximately 25% less than that of uninfected fish. We believe this is the first empirical evidence linking N. hirame infection to death of the host through predation. Consequences of N. hirame-induced behavioural change for the survival of juvenile flounder in the wild are discussed. We conclude that recent outbreaks of N. hirame are likely to have been a key factor in the decline of flounder populations in Japan.  相似文献   
932.
Mycobacterium avium-Mycobacterium intracellulare complex (MAC) is the most common isolate of nontuberculous mycobacteria and causes pulmonary and extrapulmonary diseases. MAC species can be grouped into 31 serotypes by the epitopic oligosaccharide structure of the species-specific glycopeptidolipid (GPL) antigen. The GPL consists of a serotype-common fatty acyl peptide core with 3,4-di-O-methyl-rhamnose at the terminal alaninol and a 6-deoxy-talose at the allo-threonine and serotype-specific oligosaccharides extending from the 6-deoxy-talose. Although the complete structures of 15 serotype-specific GPLs have been defined, the serotype 16-specific GPL structure has not yet been elucidated. In this study, the chemical structure of the serotype 16 GPL derived from M. intracellulare was determined by using chromatography, mass spectrometry, and nuclear magnetic resonance analyses. The result indicates that the terminal carbohydrate epitope of the oligosaccharide is a novel N-acyl-dideoxy-hexose. By the combined linkage analysis, the oligosaccharide structure of serotype 16 GPL was determined to be 3-2'-methyl-3'-hydroxy-4'-methoxy-pentanoyl-amido-3,6-dideoxy-beta-hexose-(1-->3)-4-O-methyl-alpha-L-rhamnose-(1-->3)-alpha-L-rhamnose-(1-->3)-alpha-L-rhamnose-(1-->2)-6-deoxy-alpha-L-talose. Next, the 22.9-kb serotype 16-specific gene cluster involved in the glycosylation of oligosaccharide was isolated and sequenced. The cluster contained 17 open reading frames (ORFs). Based on the similarity of the deduced amino acid sequences, it was assumed that the ORF functions include encoding three glycosyltransferases, an acyltransferase, an aminotransferase, and a methyltransferase. An M. avium serotype 1 strain was transformed with cosmid clone no. 253 containing gtfB-drrC of M. intracellulare serotype 16, and the transformant produced serotype 16 GPL. Together, the ORFs of this serotype 16-specific gene cluster are responsible for the biosynthesis of serotype 16 GPL.  相似文献   
933.
The Mycobacterium avium complex is distributed ubiquitously in the environment. It is an important cause of pulmonary and extrapulmonary diseases in humans and animals. The species in this complex produce polar glycopeptidolipids (GPLs); of particular interest is their serotype-specific antigenicity. Several reports have described that GPL structure may play an important role in bacterial physiology and pathogenesis and in the host immune response. Recently, we determined the complete structure of the GPL derived from Mycobacterium intracellulare serotype 7 and characterized the serotype 7 GPL-specific gene cluster. The structure of serotype 7 GPL closely resembles that of serotype 12 GPL, except for O methylation. In the present study, we isolated and characterized the serotype 12-specific gene cluster involved in glycosylation of the GPL. Ten open reading frames (ORFs) and one pseudogene were observed in the cluster. The genetic organization of the serotype 12-specific gene cluster resembles that of the serotype 7-specific gene cluster, but two novel ORFs (orfA and orfB) encoding putative methyltransferases are present in the cluster. Functional analyses revealed that orfA and orfB encode methyltransferases that synthesize O-methyl groups at the C-4 position in the rhamnose residue next to the terminal hexose and at the C-3 position in the terminal hexose, respectively. Our results show that these two methyltransferase genes determine the structural difference of serotype 12-specific GPL from serotype 7-specific GPL.  相似文献   
934.
The chloroplast NAD(P)H dehydrogenase (NDH) complex functions in PSI cyclic and chlororespiratory electron transport in higher plants. Eleven plastid-encoded and three nuclear-encoded subunits have been identified so far, but the entire subunit composition, especially of the putative electron donor-binding module, is unclear. We isolated Arabidopsis thaliana crr23 (chlororespiratory reduction) mutants lacking NDH activity according to the absence of a transient increase in Chl fluorescence after actinic light illumination. Although CRR23 shows similarity to the NdhL subunit of cyanobacterial NDH-1, it has three transmembrane domains rather than the two in cyanobacterial NdhL. Unlike cyanobacterial NdhL, CRR23 is essential for stabilizing the NDH complex, which in turn is required for the accumulation of CRR23. Furthermore, CRR23 and NdhH, a subunit of chloroplast NDH, co-localized in blue-native gel. All the results indicate that CRR23 is an ortholog of cyanobacterial ndhL in Arabidopsis, despite its diversity of structure and function.  相似文献   
935.
936.
937.
A new hypothesis explaining the adaptive significance of bright autumn leaf colors argues that these colors signal tree quality to myrmecophilous specialist aphids. In turn, the aphids attract aphid-tending ants during the following spring, which defend the trees from other aphids and herbivores. In this context, other types of plant coloration, such as the color change observed in young and old spring leaves, may function as a signal of plant quality for aphids and other myrmecophilous hemipterans. If these plant colors are costly for plants, then vividly colorful plants would be required to invest more in growth than in defense; as a result, colorful plants may be more palatable for honeydew-producing hemipterans, such as aphids, scale insects and treehoppers, although the relative importance of hemipterans other than aphids may be relatively low. These hemipterans may be attracted to colorful plants, after which their attendant ants would protect the plants from herbivory. However, it is necessary to examine color vision in hemipterans to support this hypothesis.Key words: ant-Hemiptera interactions, indirect effects, myrmecophiles, plant-ant mutualism, plant coloration, tritrophic interactionsRecently, the adaptive significance of plant coloration has attracted scientific interest.1 Various theories have been postulated to explain the adaptive value of autumn leaf colors (red and yellow).2 The coevolution hypothesis, the most novel and challenging theory among those proposed, argues that bright leaf colors serve as a conspicuous defense signal against autumn-colonizing insect herbivores, particularly aphids.3 According to this hypothesis, the production of autumn color pigments is an indicator of a particularly vigorous tree. Aphids, which have color vision and have long been associated with trees, migrate to winter host trees in the autumn and cause substantial damage. Therefore, vivid leaf color in the autumn would encourage aphids to colonize other less vigorously defended trees.4 Hamilton and Brown3 and Holopainen and Peltonen5 detected a higher number of specialist aphids on tree species with more intense autumn colors.After Hamilton and Brown,3 several researchers have attempted to explain the relationship between aphids and autumn color.2,6 However, they did not account for several possibilities.6 First, healthy, vigorous trees may not be well defended, because they invest more in growth than in defense. Second, some aphid species avoid colonizing trees with bright colors, whereas others are attracted to bright colors. Finally, there are numerous multispecific interactions between plants, herbivores, predators and parasitoids in tree crowns. Ants prey on various arthropods living in trees, and ant-aphid mutualism affects arboreal arthropod communities. I incorporated these factors and formed a hypothesis in which autumn leaf colors signal tree quality to myrmecophilous specialist aphids. These aphids, in turn, attract aphid-tending ants during the following spring, which then defend the trees from other aphids and herbivores. Thus, autumn colors may be adaptive, because they attract myrmecophilous specialist aphids and their attendant ants, thereby reducing herbivory and interspecific competition among aphids.6In this addendum, I extend my former hypothesis beyond the relationship between autumn leaf colors and aphids. First, myrmecophilous aphids are not the only arthropods that benefit trees. Styrsky and Eubanks7 recently reviewed the literature regarding the effects of interactions between ants and honeydew-producing hemipterans on plants, and found that plants actually benefited indirectly from these interactions in most cases. This finding supports a new hypothesis focused on plant-ant mutualism via aphids. In addition, the mutualism between ants and honeydew-producing hemipterans includes many other organisms in addition to aphids, such as scale insects and treehoppers. Scale insects, especially soft scales (Coccidae) and mealybugs (Pseudococcidae), comprise many species that are tended by honeydew-collecting ants,8 and ant-scale insect mutualism is often beneficial for host plants.7 Although the female adults of scale insects are usually immobile, first-instar nymphs (crawlers) disperse by wind and locate on host plants, usually trees.9 The nymphs, emerging at various times from spring to autumn,10 may use plant coloration to select a suitable host. However, because specialist coccids and mealybugs represent a minority among the speciose scale insects,10 coevolutionary relationships between plants and ants via specialist scale insects may be relatively rare. The treehoppers also comprise many myrmecophilous species,8,11 but the diversity of this group is highest in tropical regions; only a relatively small number of membracid species are present in temperate regions.12 Therefore, scale insects and treehoppers may be attracted to autumn colors, and their attendant ants may then defend trees against other herbivorous insects. To fully account for the adaptive value of autumn colors, one would expect the importance of these hemipterans to be less than that of aphids, based on their low host-plant specificity, restricted distribution and life cycles. However, hemipterans may be associated with plant coloration in other aspects than autumn leaf color.Second, the colors of young and old spring leaves may also signal plant quality to ant-tended honeydew-producing hemipterans. The young leaves of many plants are reddish or yellowish (Fig. 1A and B).13 In the spring and other seasons, the old leaves of some evergreen tree species turn red or yellow (Fig. 1B). Because changes in leaf color may occur from spring to autumn, various hemipteran species may play specific roles as the season progresses. Aphids migrate in the spring and in the autumn,14 although most host-alternating aphids migrate to trees in autumn and to herbs in the late spring in temperate regions.15 If plants pay some cost for these colors16 and vivid colors indicate high plant quality for hemipterans, then changing colors may attract myrmecophilous hemipterans including aphids, scale insects and treehoppers, which may then protect plants against herbivory by other insects.Open in a separate windowFigure 1(A) Red young leaves of the evergreen oak Quercus glauca. (B) Yellowish young and reddish old leaves of the camphor tree Cinnamomum camphora.However, color vision has not been examined in detail in most hemipteran insects.17,18 Many insects are insensitive to red, although one species of flower-visiting thrip is specifically attracted to red flowers.19 Thus, studies on color vision in hemipteran insects are required to evaluate this new hypothesis, as well as the coevolution hypothesis.  相似文献   
938.
939.
Monostroma latissimum (Kuetzing) Wittrock is a monostromatic green alga of commercial importance in Japan. Here we report the serendipitous discovery of asexually reproducing specimens collected from Usa, on the Pacific coast of Kochi Prefecture, south-western Japan. Zoids were found to be biflagellate and negatively phototactic. Germination of settled zoids was observed to follow erect-filamentous ontogeny similar to that of the previously reported sexual strain. Moreover, the newly discovered asexual strain had identical sequences of nuclear encoded ITS (Internal Transcribed Spacer) region to that of the sexual strain. On the basis of this finding, we postulate that the ITS sequences may have been maintained in these conspecific strains despite the evolution in sexuality. Relationships were investigated among M. latissimum and other monostromatic taxa within the class Ulvophyceae using ITS sequences in order to understand relative phylogenetic position of this species.  相似文献   
940.
The 5-formyluracil (5-foU), a major mutagenic oxidative damage of thymine, is removed from DNA by Nth, Nei and MutM in Escherichia coli. However, DNA polymerases can also replicate past the 5-foU by incorporating C and G opposite the lesion, although the mechanism of correction of the incorporated bases is still unknown. In this study, using a borohydride-trapping assay, we identified a protein trapped by a 5-foU/C-containing oligonucleotide in an extract from E. coli mutM nth nei mutant. The protein was subsequently purified from the E. coli mutM nth nei mutant and was identified as KsgA, a 16S rRNA adenine methyltransferase. Recombinant KsgA also formed the trapped complex with 5-foU/C- and thymine glycol (Tg)/C-containing oligonucleotides. Furthermore, KsgA excised C opposite 5-foU, Tg and 5-hydroxymethyluracil (5-hmU) from duplex oligonucleotides via a β-elimination reaction, whereas it could not remove the damaged base. In contrast, KsgA did not remove C opposite normal bases, 7,8-dihydro-8-oxoguanine and 2-hydroxyadenine. Finally, the introduction of the ksgA mutation increased spontaneous mutations in E. coli mutM mutY and nth nei mutants. These results demonstrate that KsgA has a novel DNA glycosylase/AP lyase activity for C mispaired with oxidized T that prevents the formation of mutations, which is in addition to its known rRNA adenine methyltransferase activity essential for ribosome biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号