首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4937篇
  免费   354篇
  国内免费   3篇
  2022年   24篇
  2021年   44篇
  2020年   29篇
  2019年   41篇
  2018年   47篇
  2017年   41篇
  2016年   87篇
  2015年   141篇
  2014年   163篇
  2013年   260篇
  2012年   280篇
  2011年   265篇
  2010年   144篇
  2009年   147篇
  2008年   240篇
  2007年   274篇
  2006年   228篇
  2005年   223篇
  2004年   242篇
  2003年   222篇
  2002年   241篇
  2001年   149篇
  2000年   143篇
  1999年   116篇
  1998年   73篇
  1997年   62篇
  1996年   48篇
  1995年   44篇
  1994年   56篇
  1993年   48篇
  1992年   89篇
  1991年   90篇
  1990年   75篇
  1989年   87篇
  1988年   60篇
  1987年   63篇
  1986年   55篇
  1985年   75篇
  1984年   71篇
  1983年   41篇
  1982年   42篇
  1981年   32篇
  1979年   49篇
  1978年   30篇
  1977年   36篇
  1976年   27篇
  1975年   28篇
  1974年   27篇
  1973年   27篇
  1972年   24篇
排序方式: 共有5294条查询结果,搜索用时 31 毫秒
991.

Objectives

Magnifying narrow-band imaging (M-NBI) is more accurate than white-light imaging for diagnosing small gastric cancers. However, it is uncertain whether moving M-NBI images have additional effects in the diagnosis of gastric cancers compared with still images.

Design

A prospective multicenter cohort study.

Methods

To identify the additional benefits of moving M-NBI images by comparing the diagnostic accuracy of still images only with that of both still and moving images. Still and moving M-NBI images of 40 gastric lesions were obtained by an expert endoscopist prior to this prospective multicenter cohort study. Thirty-four endoscopists from ten different Japanese institutions participated in the prospective multicenter cohort study. Each study participant was first tested using only still M-NBI images (still image test), then tested 1 month later using both still and moving M-NBI images (moving image test). The main outcome was a difference in the diagnostic accuracy of cancerous versus noncancerous lesions between the still image test and the moving image test.

Results

Thirty-four endoscopists were analysed. There were no significant difference of cancerous versus noncancerous lesions between still and moving image tests in the diagnostic accuracy (59.9% versus 61.5%), sensitivity (53.4% versus 55.9%), and specificity (67.0% versus 67.6%). And there were no significant difference in the diagnostic accuracy between still and moving image tests of demarcation line (65.4% versus 65.5%), microvascular pattern (56.7% versus 56.9%), and microsurface pattern (48.1% versus 50.9%). Diagnostic accuracy showed no significant difference between the still and moving image tests in the subgroups of endoscopic findings of the lesions.

Conclusions

The addition of moving M-NBI images to still M-NBI images does not improve the diagnostic accuracy for gastric lesions. It is reasonable to concentrate on taking sharp still M-NBI images during endoscopic observation and use them for diagnosis.

Trial registration

Umin.ac.jp UMIN-CTR000008048  相似文献   
992.
Neutrophil extracellular traps (NETs), a newly identified immune mechanism, are induced by inflammatory stimuli. Modification by citrullination of histone H3 is thought to be involved in the in vitro formation of NETs. The purposes of this study were to evaluate whether NETs and citrullinated histone H3 (Cit-H3) are present in the bloodstream of critically ill patients and to identify correlations with clinical and biological parameters. Blood samples were collected from intubated patients at the time of ICU admission from April to June 2011. To identify NETs, DNA and histone H3 were visualized simultaneously by immunofluorescence in blood smears. Cit-H3 was detected using a specific antibody. We assessed relationships of the presence of NETs and Cit-H3 with the existence of bacteria in tracheal aspirate, SIRS, diagnosis, WBC count, and concentrations of IL-8, TNF-α, cf-DNA, lactate, and HMGB1. Forty-nine patients were included. The median of age was 66.0 (IQR: 52.5–76.0) years. The diagnoses included trauma (7, 14.3%), infection (14, 28.6%), resuscitation from cardiopulmonary arrest (8, 16.3%), acute poisoning (4, 8.1%), heart disease (4, 8.1%), brain stroke (8, 16.3%), heat stroke (2, 4.1%), and others (2, 4.1%). We identified NETs in 5 patients and Cit-H3 in 11 patients. NETs and/or Cit-H3 were observed more frequently in “the presence of bacteria in tracheal aspirate” group (11/22, 50.0%) than in “the absence of bacteria in tracheal aspirate” group (4/27, 14.8%) (p<.01). Multiple logistic regression analysis showed that only the presence of bacteria in tracheal aspirate was significantly associated with the presence of NETs and/or Cit-H3. The presence of bacteria in tracheal aspirate may be one important factor associated with NET formation. NETs may play a pivotal role in the biological defense against the dissemination of pathogens from the respiratory tract to the bloodstream in potentially infected patients.  相似文献   
993.
Recent nutritional epidemiological surveys showed that serum β-cryptoxanthin inversely associates with the risks for insulin resistance and liver dysfunction. Consumption of β-cryptoxanthin possibly prevents nonalcoholic steatohepatitis (NASH), which is suggested to be caused by insulin resistance and oxidative stress from nonalcoholic fatty liver disease. To evaluate the effect of β-cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% β-cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, β-cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice. Comprehensive gene expression analysis showed that although β-cryptoxanthin histochemically reduced steatosis, it was more effective in inhibiting inflammatory gene expression change in NASH. β-Cryptoxanthin reduced the alteration of expression of genes associated with cell death, inflammatory responses, infiltration and activation of macrophages and other leukocytes, quantity of T cells, and free radical scavenging. However, it showed little effect on the expression of genes related to cholesterol and other lipid metabolism. The expression of markers of M1 and M2 macrophages, T helper cells, and cytotoxic T cells was significantly induced in NASH and reduced by β-cryptoxanthin. β-Cryptoxanthin suppressed the expression of lipopolysaccharide (LPS)-inducible and/or TNFα-inducible genes in NASH. Increased levels of the oxidative stress marker thiobarbituric acid reactive substances (TBARS) were reduced by β-cryptoxanthin in NASH. Thus, β-cryptoxanthin suppresses inflammation and the resulting fibrosis probably by primarily suppressing the increase and activation of macrophages and other immune cells. Reducing oxidative stress is likely to be a major mechanism of inflammation and injury suppression in the livers of mice with NASH.  相似文献   
994.
We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression.  相似文献   
995.
Chronic inflammation and subsequent fibrosis induced by mechanical stress play an important role in ligamentum flavum (LF) hypertrophy and degeneration in patients with lumbar spinal canal stenosis (LSCS). Angiopoietin-like protein 2 (Angptl2) is a chronic inflammatory mediator induced under various pathological conditions and increases the expression of TGF-β1, which is a well-characterized mediator in LF hypertrophy. We investigated whether Angptl2 is induced by mechanical stress, and whether it contributes to LF hypertrophy and degeneration by activating the TGF-β1 signaling cascade. In this study, we investigated human LF tissue and LF fibroblasts isolated from patients who underwent lumbar surgery. We found that Angptl2 was abundantly expressed in fibroblasts of hypertrophied LF tissues at both the mRNA and protein levels. This expression was not only positively correlated with LF thickness and degeneration but also positively correlated with lumbar segmental motion. Our in vitro experiments with fibroblasts from hypertrophied LF tissue revealed that mechanical stretching stress increases the expression and secretion of Angptl2 via activation of calcineurin/NFAT pathways. In hypertrophied LF tissue, expression of TGF-β1 mRNA was also increased and TGF-β1/Smad signaling was activated. Angptl2 expression in LF tissue was positively correlated with the expression of TGF-β1 mRNA, suggesting cooperation between Angptl2 and TGF-β1 in the pathogenesis of LF hypertrophy. In vitro experiments revealed that Angptl2 increased levels of TGF-β1 and its receptors, and also activated TGF-β1/Smad signaling. Mechanical stretching stress increased TGF-β1 mRNA expression, which was partially attenuated by treatment with a calcineurin/NFAT inhibitor or Angptl2 siRNA, indicating that induction of TGF-β1 expression by mechanical stretching stress is partially mediated by Angptl2. We conclude that expression of Angptl2 induced by mechanical stress in LF fibroblasts promotes LF tissue degeneration by activation of TGF-β1/Smad signaling, which results in LF hypertrophy in patients with LSCS.  相似文献   
996.
Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) is one of the immunoglobulin-like membrane proteins that is crucial for negative regulation of toll-like receptor 4 (TLR4) and interleukin-1 receptor. Despite the importance of understanding its expression and function, knowledge is limited on the regulatory mechanism in the epithelial tissues, such as the liver, lung, and gut, where its predominant expression is originally described. Here, we found expression of SIGIRR in non-epithelial innate immune cells, including primary peripheral blood monocytes, polymorphonuclear neutrophils, monocytic RAW264 cells, and neutrophilic-differentiated HL-60 cells. Consistent with previous findings in epithelial tissues, SIGIRR gene and protein expression were also down-regulated by LPS treatment in a time-dependent manner in primary blood monocytes and polymorphonuclear neutrophils. A reduction was also observed in RAW264 and differentiated HL-60 cells. Notably, exogenous introduction of the dominant negative form of TLR4 and siRNA of p38 resulted in inhibition of LPS-induced SIGIRR down-regulation, whereas treatment with p38 activator anisomycin showed a dose-dependent decrease in SIGIRR expression, suggesting TLR4-p38 signal as a critical pathway for LPS-induced SIGIRR down-regulation. Finally, reporter gene and chromatin immunoprecipitation assays demonstrated that Sp1 is a key factor that directly binds to the proximal promoter of SIGIRR gene and consequently regulates basal SIGIRR expression, which is negatively regulated by the LPS-dependent TLR4-p38 pathway. In summary, the data precisely demonstrate how LPS down-regulates SIGIRR expression and provide a role of LPS signal that counteracts Sp1-dependent basal promoter activation of SIGIRR gene via TLR4-p38 pathway in non-epithelial innate immune cells.  相似文献   
997.
Fibrodysplasia ossificans progressiva is characterized by extensive ossification within muscle tissues, and its molecular pathogenesis is responsible for the constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2). In this study, we investigated the effects of implanting ALK2 (R206H)-transfected myoblastic C2C12 cells into nude mice on osteoclast formation during heterotopic ossification in muscle and subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells with BMP-2 in nude mice induced robust heterotopic ossification with an increase in the formation of osteoclasts in muscle tissues but not in subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells in muscle induced heterotopic ossification more effectively than that of empty vector-transfected cells. A co-culture of ALK2 (R206H)-transfected C2C12 cells as well as the conditioned medium from ALK2 (R206H)-transfected C2C12 cells enhanced osteoclast formation in Raw264.7 cells more effectively than those with empty vector-transfected cells. The transfection of ALK2 (R206H) into C2C12 cells elevated the expression of transforming growth factor (TGF)-β, whereas the inhibition of TGF-β signaling suppressed the enhanced formation of osteoclasts in the co-culture with ALK2 (R206H)-transfected C2C12 cells and their conditioned medium. In conclusion, this study demonstrated that the causal mutation transfection of fibrodysplasia ossificans progressiva in myoblasts enhanced the formation of osteoclasts from its precursor through TGF-β in muscle tissues.  相似文献   
998.
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.  相似文献   
999.
Elevated levels of amyloid-β peptide (Aβ) in the human brain are linked to the pathogenesis of Alzheimer disease. Recent in vitro studies have demonstrated that extracellular Aβ can bind to exosomes, which are cell-secreted nanovesicles with lipid membranes that are known to transport their cargos intercellularly. Such findings suggest that the exosomes are involved in Aβ metabolism in brain. Here, we found that neuroblastoma-derived exosomes exogenously injected into mouse brains trapped Aβ and with the associated Aβ were internalized into brain-resident phagocyte microglia. Accordingly, continuous intracerebral administration of the exosomes into amyloid-β precursor protein transgenic mice resulted in marked reductions in Aβ levels, amyloid depositions, and Aβ-mediated synaptotoxicity in the hippocampus. In addition, we determined that glycosphingolipids (GSLs), a group of membrane glycolipids, are highly abundant in the exosomes, and the enriched glycans of the GSLs are essential for Aβ binding and assembly on the exosomes both in vitro and in vivo. Our data demonstrate that intracerebrally administered exosomes can act as potent scavengers for Aβ by carrying it on the exosome surface GSLs and suggest a role of exosomes in Aβ clearance in the central nervous system. Improving Aβ clearance by exosome administration would provide a novel therapeutic intervention for Alzheimer disease.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号