首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10118篇
  免费   577篇
  10695篇
  2022年   56篇
  2021年   106篇
  2020年   59篇
  2019年   78篇
  2018年   121篇
  2017年   111篇
  2016年   192篇
  2015年   266篇
  2014年   304篇
  2013年   571篇
  2012年   481篇
  2011年   490篇
  2010年   298篇
  2009年   324篇
  2008年   479篇
  2007年   469篇
  2006年   420篇
  2005年   467篇
  2004年   446篇
  2003年   437篇
  2002年   416篇
  2001年   360篇
  2000年   388篇
  1999年   283篇
  1998年   131篇
  1997年   95篇
  1996年   70篇
  1995年   81篇
  1994年   77篇
  1993年   89篇
  1992年   203篇
  1991年   199篇
  1990年   203篇
  1989年   193篇
  1988年   178篇
  1987年   145篇
  1986年   118篇
  1985年   113篇
  1984年   111篇
  1983年   87篇
  1982年   76篇
  1981年   65篇
  1979年   87篇
  1978年   68篇
  1977年   65篇
  1976年   58篇
  1975年   60篇
  1974年   58篇
  1973年   55篇
  1972年   63篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
82.
BackgroundThe epidemiology of childhood SARS-CoV-2 infection and COVID-19-related illness remains little studied in high-transmission tropical settings, partly due to the less severe clinical manifestations typically developed by children and the limited availability of diagnostic tests. To address this knowledge gap, we investigate the prevalence and predictors of SARS-CoV-2 infection (either symptomatic or not) and disease in 5 years-old Amazonian children.Methodology/Principal findingsWe retrospectively estimated SARS-CoV-2 attack rates and the proportion of infections leading to COVID-19-related illness among 660 participants in a population-based birth cohort study in the Juruá Valley, Amazonian Brazil. Children were physically examined, tested for SARS-CoV-2 IgG and IgM antibodies, and had a comprehensive health questionnaire administered during a follow-up visit at the age of 5 years carried out in January or June-July 2021. We found serological evidence of past SARS-CoV-2 infection in 297 (45.0%; 95% confidence interval [CI], 41.2–48.9%) of 660 cohort participants, but only 15 (5.1%; 95% CI, 2.9–8.2%) seropositive children had a prior medical diagnosis of COVID-19 reported by their mothers or guardians. The period prevalence of clinically apparent COVID-19, defined as the presence of specific antibodies plus one or more clinical symptoms suggestive of COVID-19 (cough, shortness of breath, and loss of taste or smell) reported by their mothers or guardians since the pandemic onset, was estimated at 7.3% (95% CI, 5.4–9.5%). Importantly, children from the poorest households and those with less educated mothers were significantly more likely to be seropositive, after controlling for potential confounders by mixed-effects multiple Poisson regression analysis. Likewise, the period prevalence of COVID-19 was 1.8-fold (95%, CI 1.2–2.6-fold) higher among cohort participants exposed to food insecurity and 3.0-fold (95% CI, 2.8–3.5-fold) higher among those born to non-White mothers. Finally, children exposed to household and family contacts who had COVID-19 were at an increased risk of being SARS-CoV-2 seropositive and–even more markedly–of having had clinically apparent COVID-19 by the age of 5 years.Conclusions/SignificanceChildhood SARS-CoV-2 infection and COVID-19-associated illness are substantially underdiagnosed and underreported in the Amazon. Children in the most socioeconomically vulnerable households are disproportionately affected by SARS-CoV-2 infection and disease.  相似文献   
83.
Puf5, a Puf-family RNA-binding protein, binds to 3´ untranslated region of target mRNAs and negatively regulates their expression in Saccharomyces cerevisiae. The puf5Δ mutant shows pleiotropic phenotypes including a weakened cell wall, a temperature-sensitive growth, and a shorter lifespan. To further analyze a role of Puf5 in cell growth, we searched for a multicopy suppressor of the temperature-sensitive growth of the puf5Δ mutant in this study. We found that overexpression of CLB2 encoding B-type cyclin suppressed the temperature-sensitive growth of the puf5Δ mutant. The puf5Δ clb2Δ double mutant displayed a severe growth defect, suggesting that Puf5 positively regulates the expression of a redundant factor with Clb2 in cell cycle progression. We found that expression of CLB1 encoding a redundant B-type cyclin was decreased in the puf5Δ mutant, and that this decrease of the CLB1 expression contributed to the growth defect of the puf5Δ clb2Δ double mutant. Since Puf5 is a negative regulator of the gene expression, we hypothesized that Puf5 negatively regulates the expression of a factor that represses CLB1 expression. We found such a repressor, Ixr1, which is an HMGB (High Mobility Group box B) protein. Deletion of IXR1 restored the decreased expression of CLB1 caused by the puf5Δ mutation and suppressed the growth defect of the puf5Δ clb2Δ double mutant. The expression of IXR1 was negatively regulated by Puf5 in an IXR1 3´ UTR-dependent manner. Our results suggest that IXR1 mRNA is a physiologically important target of Puf5, and that Puf5 and Ixr1 contribute to the cell cycle progression through the regulation of the cell cycle-specific expression of CLB1.  相似文献   
84.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
85.
Chloroplasts are believed to be descendants of ancestral cyanobacteria that had peptidoglycan layer between the outer and the inner membranes. Historically, the glaucophyte Cyanophora paradoxa and the rhizopod Paulinella chromatophora were believed to harbor symbiotic cyanobacteria having peptidoglycan, which were conventionally named “cyanelles”. In addition, the complete set of genes involved in the synthesis of peptidoglycan has been found in the moss Physcomitrella patens and some plants and algae. The presence of peptidoglycan-like structures was demonstrated by a new metabolic labeling technique in P. patens. However, many green algae and all known red algae lack peptidoglycan-related genes. That is the reason why we questioned the origin of peptidoglycan-synthesizing enzymes in the chloroplasts of the green algae and plants. We performed phylogenetic analysis of ten enzymes involved in the synthesis of peptidoglycan exploiting the Gclust homolog clusters and additional genomic data. As expected, all the identified genes encoded in the chromatophore genome of P. chromatophora were closely related to cyanobacterial homologs. In the green algae and plants, only two genes, murA and mraY, were found to be closely related to cyanobacterial homologs. The origins of all other genes were diverse. Unfortunately, the origins of C. paradoxa genes were not clearly determined because of incompleteness of published genomic data. We discuss on the probable evolutionary scenarios to explain the mostly non-cyanobacterial origins of the biosynthetic enzymes of chloroplast peptidoglycan: A plausible one includes extensive multiple horizontal gene transfers during the early evolution of Viridiplantae.  相似文献   
86.
Four analogs of succinoyl trehalose lipid-3 (STL-3)with saturated even-number or odd-number carbonchains, and unsaturated or halogenated fatty acidswere examined for their ability to inhibit the growthand induce the differentiation of HL-60 humanpromyelocytic leukemia cells. The optimalconcentration of STL-3 at which such activities wererecognized was closed to the critical micelleconcentration of STL-3. Analog of STL-3 witheven-number or odd-number carbon chain and unsaturatedfatty acids strongly inhibited growth and induced thedifferentiation of HL-60 cells, as evaluated in termsof nitroblue tetrazilium-reducing activity and theappearance of the CD36 antigen. An analog of STL-3with halogenated fatty acids significantly inhibitedproliferation but only induced the differentiation ofHL-60 cells. Our results indicate that the effects ofSTL-3 and its analogs on HL-60 cells depend on thestructure of the hydrophobic moiety of STL-3.These authors contributed equally to this work  相似文献   
87.
Lesion formation due to oral administration of absolute ethanol could be prevented by parenteral pretreatment with antiperoxidative drugs such as butylated hydroxytoluene (BHT), quercetin and quinacrine. Also effective were allopurinol and oxypurinol, inhibitors of xanthine oxidase, but not superoxide dismutase (SOD) and hydroxyl radical scavengers, such as sodium benzoate and dimethyl sulfoxide (DMSO). BHT, quercetin, quinacrine and sulfhydryl compounds such as reduced glutathione and cysteamine which offer gastroprotection in vivo against ethanol inhibited lipid peroxidation induced in vitro by ferrous ion in porcine gastric mucosal homogenate, but SOD, sodium benzoate, DMSO, allopurinol and oxypurinol did not. These results suggest the possibility that an active species, probably derived from free iron mobilized by the xanthine oxidase system, other than oxygen radicals such as hydroxyl radicals, contributes to lipid peroxidation and lesion formation in the gastric mucosa after absolute ethanol administration.  相似文献   
88.
The lung collectin surfactant protein A (SP-A) has been implicated in the regulation of pulmonary host defense and inflammation. Zymosan induces proinflammatory cytokines in immune cells. Toll-like receptor (TLR)2 has been shown to be involved in zymosan-induced signaling. We first investigated the interaction of TLR2 with zymosan. Zymosan cosedimented the soluble form of rTLR2 possessing the putative extracellular domain (sTLR2). sTLR2 directly bound to zymosan with an apparent binding constant of 48 nM. We next examined whether SP-A modulated zymosan-induced cellular responses. SP-A significantly attenuated zymosan-induced TNF-alpha secretion in RAW264.7 cells and alveolar macrophages in a concentration-dependent manner. Although zymosan failed to cosediment SP-A, SP-A significantly reduced zymosan-elicited NF-kappaB activation in TLR2-transfected human embryonic kidney 293 cells. Because we have shown that SP-A binds to sTLR2, we also examined whether SP-A affected the binding of sTLR2 to zymosan. SP-A significantly attenuated the direct binding of sTLR2 to zymosan in a concentration-dependent fashion. From these results, we conclude that 1) TLR2 directly binds zymosan, 2) SP-A can alter zymosan-TLR2 interaction, and 3) SP-A down-regulates TLR2-mediated signaling and TNF-alpha secretion stimulated by zymosan. This study supports an important role of SP-A in controlling pulmonary inflammation caused by microbial pathogens.  相似文献   
89.
Considerable attention has been focused on predicting the secondary structure for aligned RNA sequences since it is useful not only for improving the limiting accuracy of conventional secondary structure prediction but also for finding non-coding RNAs in genomic sequences. Although there exist many algorithms of predicting secondary structure for aligned RNA sequences, further improvement of the accuracy is still awaited. In this article, toward improving the accuracy, a theoretical classification of state-of-the-art algorithms of predicting secondary structure for aligned RNA sequences is presented. The classification is based on the viewpoint of maximum expected accuracy (MEA), which has been successfully applied in various problems in bioinformatics. The classification reveals several disadvantages of the current algorithms but we propose an improvement of a previously introduced algorithm (CentroidAlifold). Finally, computational experiments strongly support the theoretical classification and indicate that the improved CentroidAlifold substantially outperforms other algorithms.  相似文献   
90.
Summary The effects of brefeldin A (BFA) on the secretion of acid phosphatase (APase) by tobacco protoplasts were investigated. Secretion of APase was inhibited by BFA in a dose-dependent manner, with a concomitant intracellular accumulation of the enzyme. The secreted APase was composed of two isoforms. BFA (10/ g/ml) inhibited the secretion of one of the isoforms without inhibiting that of the other, and this phenomenon explains the partial inhibition of APase secretion as a whole. The inhibition of APase secretion was accompanied by changes in the morphology of the Golgi apparatus and also by an increment in massdensity of cells.Abbreviations APase acid phosphatase - BFA brefeldin A - CHX cycloheximide - PAGE polyacrylamide gel electrophoresis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号