首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   10篇
  2021年   3篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   11篇
  2006年   1篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   7篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
61.
Hypertension is a lifestyle-related disease which often leads to serious conditions such as heart disease and cerebral hemorrhage. Angiotensin II (Ang II) plays an important role in regulating cardiovascular homeostasis. Consequently, antagonists that block the interaction of Ang II with its receptors are thought to be effective in the suppression of hypertension. In this study, we searched for plant compounds that had antagonist-like activity toward Ang II receptors. From among 435 plant samples, we found that EtOH extract from the resin of sweet gum Liquidambar styraciflua strongly inhibited Ang II signaling. We isolated benzyl benzoate and benzyl cinnamate from this extract and found that those compounds inhibited the function of Ang II in a dose-dependent manner without cytotoxicity. An in vivo study showed that benzyl benzoate significantly suppressed Ang II-induced hypertension in mice. In addition, we synthesized more than 40 derivatives of benzyl benzoate and found that the meta-methyl and 3-methylbenzyl 2'-nitrobenzoate derivatives showed about 10-fold higher activity than benzyl benzoate itself. Thus, benzyl benzoate, its derivatives, and benzyl cinnamate may be useful for reducing hypertension.  相似文献   
62.
The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.  相似文献   
63.
64.
65.
66.
Neurochondrin/norbin is a cytoplasmic protein involved in dendrite outgrowth. The expression of the gene has been restricted to neural, bone, and chondral tissues. To identify the functions of the gene in vivo, we have generated mice with a disrupted mutation in the neurochondrin/norbin gene. Histological analysis of heterozygous mutant mice indicates the possibility of specific functions of neurochondrin/norbin in chondrocyte differentiation. We defined the expression patterns of neurochondrin/norbin-lacZ fusion protein in the central nervous system. In the developing olfactory bulb, beta-galactosidase activity was detected in the mantle layer at 12.5 dpc and the strongest activity was detected in the presumptive mitral or tufted cell layer at 15.5 dpc. beta-Galactosidase activity was also detected in the lateral choroid plexus. In homozygous (-/-) mutant mice, the disruption of the neurochondrin/norbin gene leads to early embryonic death between 3.5 and 6.5 dpc. This result indicates that neurochondrin/norbin gene function is essential for the early embryogenesis.  相似文献   
67.
68.
The androgen-androgen receptor (AR) system plays vital roles in a wide array of biological processes, including prostate cancer development and progression. Several growth factors, such as insulin-like growth factor 1 (IGF1), can induce AR activation, whereas insulin resistance and hyperinsulinemia are correlated with an elevated incidence of prostate cancer. Here we report that Foxo1, a downstream molecule that becomes phosphorylated and inactivated by phosphatidylinositol 3-kinase/Akt kinase in response to IGF1 or insulin, suppresses ligand-mediated AR transactivation. Foxo1 reduces androgen-induced AR target gene expressions and suppresses the in vitro growth of prostate cancer cells. These inhibitory effects of Foxo1 are attenuated by IGF1 but are enhanced when it is rendered Akt-nonphosphorylatable. Foxo1 interacts directly with the C terminus of AR in a ligand-dependent manner and disrupts ligand-induced AR subnuclear compartmentalization. Foxo1 is recruited by liganded AR to the chromatin of AR target gene promoters, where it interferes with AR-DNA interactions. IGF1 or insulin abolish the Foxo1 occupancy of these promoters. Of interest, a positive feedback circuit working locally in an autocrine/intracrine manner may exist, because liganded AR up-regulates IGF1 receptor expression in prostate cancer cells, presumably resulting in higher IGF1 signaling tension and further enhancing the functions of the receptor itself. Thus, Foxo1 is a novel corepressor for AR, and IGF1/insulin signaling may confer stimulatory effects on AR by attenuating Foxo1 inhibition. These results highlight the potential involvement of metabolic syndrome and hyperinsulinemia in prostate diseases and further suggest that intervention of IGF1/insulin-phosphatidylinositol 3-kinase-Akt signaling may be of clinical value for prostate diseases.  相似文献   
69.
The short toes mutation of the axolotl   总被引:1,自引:1,他引:0  
  相似文献   
70.
Vascular remodeling in hypertensive transgenic mice.   总被引:1,自引:0,他引:1  
We physiologically and histopathologically analyzed vascular damage due to hypertension and vascular remodeling in hypertensive transgenic mice (Tsukuba hypertensive mice; THM). Pubertal (6-week-old) THM already had hypertension similar to blood pressure in adult THM due to an enhanced renin angiotensin system (RAS). They progressively developed remarkable vascular hypertrophy composed of dedifferentiation of vascular smooth muscle cells (VSMCs) and extracellular matrix accumulation in the thoracic aorta, and VSMC hyperplasia was predominant in the abdominal aorta. THM are therefore a useful animal model for studying vascular remodeling mediated by enhanced RAS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号