首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   9篇
  181篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   5篇
  2017年   7篇
  2016年   1篇
  2015年   7篇
  2014年   5篇
  2013年   8篇
  2012年   13篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   8篇
  2007年   5篇
  2006年   18篇
  2005年   10篇
  2004年   12篇
  2003年   10篇
  2002年   13篇
  2001年   8篇
  2000年   9篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
1.
To identify erythroid-specific heme-regulated genes, we performed differential expression analysis between wild-type and heme-deficient erythroblasts, which had been prepared from wild-type and erythroid-specific delta-aminolevulinate synthase-null mouse ES cells, respectively. Among 8737 clones on cDNA array, 40 cDNA clones, including 34 unknown ESTs, were first selected by their high expression profiles in wild-type erythroblasts, and evaluated further for their erythroid-lineage specificity, expression in hematopoietic tissues in vivo, and heme-dependent expression, which yielded 11, 4, and 4 genes, respectively. Because of the selection strategy employed, the final 4 were considered as the newly identified erythroid-specific heme-regulated genes. These 4 genes were uncoupling protein 2, nucleolar spindle-associated protein, cellular nucleic acid-binding protein, and a novel acetyltransferase-like protein. These findings thus suggest that heme may regulate a wide variety of hitherto unrecognized genes, and further analysis of these genes may clarify their role in erythroid cell differentiation.  相似文献   
2.
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI‐interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl‐arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain‐containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor‐like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon‐derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality‐controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.  相似文献   
3.
The name Enterobacter kobei sp. nov. is proposed for a group of organisms referred to as NIH Group 21 at the National Institute of Health, Tokyo. The members of this species are Gram-negative, motile rods conforming to the definition of the family Enterobacteriaceae. The DNA relatedness of 23 strains of NIH Group 21 to the representative proposed as the type strain of this species averaged 82% at 70°C, whereas the relatedness to other species within the family Enterobacteriaceae was less than 42%. Because the phenotypic resemblance to Enterobacter cloacae is very close and the DNA relatedness (12–42%) is closer to species of the genus Enterobacter than to other species of the family, the members of NIH Group 21 were placed in the genus Enterobacter. Close phenotypic and genetic relationships were also found between NIH Group 21 and a member of a group of organisms referred to as Enteric Group 69 at the Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. It is suggested that the latter could be regarded as a subspecific rank of E. kobei, though this is subject to study of further strains. The majority of strains of E. kobei were isolated from clinical specimens. A culture of the type strain (NIH 1485-79) has been deposited in the Japan Collection of Microorganisms as JCM 8580. Received: 22 March 1996 / Accepted: 19 April 1996  相似文献   
4.
5.
6.
Mannan-binding protein (MBP) is a C-type serum lectin that is known to be a host defense factor involved in innate immunity, and recognizes mannose, fucose, and N-acetylglucosamine residues. Although some exogenous MBP ligands have been reported, little is known about its endogenous ligands. In the present study, we found that endogenous MBP ligands are highly expressed in the brush border epithelial cells of kidney-proximal tubules by immunohistochemistry, and both meprin alpha and beta (meprins), as novel endogenous MBP ligands, have been identified through affinity chromatography and mass spectrometry. Meprins are membrane-bound and secreted zinc metalloproteases extensively glycosylated and highly expressed in kidney and small intestinal epithelial cells, leukocytes, and certain cancer cells. Meprins are capable of cleaving growth factors, extracellular matrix proteins, and biologically active peptides. Deglycosylation experiments indicated that the MBP ligands on meprins are high mannose- or complex-type N-glycans. The interaction of MBP with meprins resulted in significant decreases in the proteolytic activity and matrix-degrading ability of meprins. Our results suggest that core N-linked oligosaccharides on meprins are associated with the optimal enzymatic activity and that MBP is an important regulator for modulation of the localized meprin proteolytic activity via N-glycan binding. Because meprins are known to be some of the major matrix-degrading metalloproteases in the kidney and intestine, MBP, which functions as a natural and effective inhibitor of meprins, may contribute, as a potential therapeutic target, to tumor progression by facilitating the migration, intravasation, and metastasis of carcinoma cells, and to acute renal failure and inflammatory bowel diseases.  相似文献   
7.
8.
Homeostatic regulation of the plasma choline concentration depends on the effective functioning of a choline transporter in the kidney. However, the nature of the choline transport system in the kidney is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake in the rat renal tubule epithelial cell line NRK-52E. Choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 16.5 μM and a maximal velocity (Vmax) of 133.9 pmol/mg protein/min. The Vmax value of choline uptake was strongly enhanced in the absence of Na+ without any change in Km values. The increase in choline uptake under Na+-free conditions was inhibited by Na+/H+ exchanger (NHE) inhibitors. Choline uptake was inhibited by the choline uptake inhibitor hemicholinium-3 (HC-3) and organic cations, and was decreased by acidification of the extracellular medium and by intracellular alkalinization. Collapse of the plasma membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. NRK-52E cells mainly express mRNA for choline transporter-like proteins (CTL1 and CTL2), and NHE1 and NHE8. CTL1 protein was recognized in both plasma membrane and mitochondria. CTL2 protein was mainly expressed in mitochondria. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in NRK-52E cells and is responsible for choline uptake. This choline transport system uses a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE8. Furthermore, the presence of CTL2 in mitochondria provides a potential site for the control of choline oxidation.  相似文献   
9.
10.
We studied the optimal age-dependent harvesting of a natural resource population that achieves a maximum income under the constraint of sustainability, i.e. the reproductive adults numbers must exceed a given minimum. The resource species is assumed to be semelparous (a single reproduction over a life). The economic value and natural mortality coefficient can vary with age. The optimal age-dependent harvesting under the sustainability constraint is obtained using Pontryagin’s maximum principle. The constraint of resource sustainability can be treated as an additional term measured in the same units as economic income. Specifically, three terms: (1) current harvesting value, (2) future harvesting value, and (3) sustainability value, are calculated for each age, and the resources should be harvested at the maximum rate when their current harvesting value is greater than the sum of future harvesting value and sustainability value, and should not be harvested otherwise. Numerical analyses of several cases demonstrated that the optimal harvesting schedule depends critically on the natural mortality coefficient and the functional form of the economic value of the resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号