首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   803篇
  免费   37篇
  国内免费   1篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   13篇
  2016年   15篇
  2015年   25篇
  2014年   29篇
  2013年   65篇
  2012年   44篇
  2011年   50篇
  2010年   36篇
  2009年   35篇
  2008年   49篇
  2007年   38篇
  2006年   51篇
  2005年   40篇
  2004年   51篇
  2003年   49篇
  2002年   39篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   12篇
  1997年   17篇
  1996年   9篇
  1995年   13篇
  1994年   7篇
  1993年   7篇
  1992年   11篇
  1991年   7篇
  1990年   6篇
  1989年   12篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
排序方式: 共有841条查询结果,搜索用时 62 毫秒
61.
The sand lizard (Lacerta agilis, Lacertidae) has a chromosome number of 2n?=?38, with 17 pairs of acrocentric chromosomes, one pair of microchromosomes, a large acrocentric Z chromosome, and a micro-W chromosome. To investigate the process of karyotype evolution in L. agilis, we performed chromosome banding and fluorescent in situ hybridization for gene mapping and constructed a cytogenetic map with 86 functional genes. Chromosome banding revealed that the Z chromosome is the fifth largest chromosome. The cytogenetic map revealed homology of the L. agilis Z chromosome with chicken chromosomes 6 and 9. Comparison of the L. agilis cytogenetic map with those of four Toxicofera species with many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) showed highly conserved linkage homology of L. agilis chromosomes (LAG) 1, 2, 3, 4, 5(Z), 7, 8, 9, and 10 with macrochromosomes and/or macrochromosome segments of the four Toxicofera species. Most of the genes located on the microchromosomes of Toxicofera were localized to LAG6, small acrocentric chromosomes (LAG11–18), and a microchromosome (LAG19) in L. agilis. These results suggest that the L. agilis karyotype resulted from frequent fusions of microchromosomes, which occurred in the ancestral karyotype of Toxicofera and led to the disappearance of microchromosomes and the appearance of many small macrochromosomes.  相似文献   
62.
Rats subcutaneously implanted with AH109A hepatoma cells show hyperlipidemia with high concentrations of serum triglyceride and nonesterified fatty acid, suppression of lipoprotein lipase (LPL), and elevation of hormone-sensitive lipase (HSL) activities during the growth of the hepatoma. Supplementation of the diet with sulfur amino acids such as l-methionine (Met) and l-cystine (Cys) improved hyperlipidemia by restoring LPL and HSL activities. In the present study, we have attempted to examine the effects of sulfur amino acids on the activity and mRNA level of LPL and the activity of HSL using 3T3-L1 cells, which are known to differentiate to adipocytes. The adipocytes were incubated with various concentrations of Met, Cys or l-cysteine (CysH) in the absence or presence of tumor necrosis factor-α (TNF-α). LPL activity was suppressed by TNF-α. In the absence of TNF-α, Met, Cys and CysH did not change the LPL activity. In the presence of TNF-α, Met and Cys significantly increased the LPL activity, and Met also enhanced the LPL mRNA level. HSL activity was also suppressed by TNF-α. In the absence of TNF-α, Met enhanced the HSL activity. In the presence of TNF-α, Met, Cys and CysH suppressed the HSL activity. Sulfur amino acids such as Met, Cys and CysH affected the LPL activity, mRNA level, and HSL activity in 3T3-L1 adipocytes. Some of these effects of sulfur amino acids were different between LPL and HSL, between the absence and the presence of TNF-α, and between 3T3-L1 adipocytes and the adipose tissue from rats.  相似文献   
63.
REV3 is the catalytic subunit of DNA polymerase ζ (pol ζ), which is responsible for the damage-induced mutagenesis that arises during error-prone translesion synthesis in eukaryotes. The related REV3L genes in human and mouse encode proteins of approximately 350 kDa, twice as large as yeast REV3, but full-length REV3L has not been identified in any vertebrate cell. We report that Xenopus laevis REV3L encodes a 352-kDa protein that has high overall amino acid sequence similarity to its mammalian counterparts, and, for the first time in a vertebrate species, we have detected putative REV3L polypeptides of 300 and 340 kDa in X. laevis oocytes. Only the 300-kDa form is stored in eggs, where its concentration of about 65 pM is much lower than those of other replication and repair proteins including the accessory pol ζ subunit REV7. In fertilized eggs, the levels of this polypeptide did not change until neurula; the larger 340-kDa form first appeared at stages after gastrula, suggesting a pattern of regulation during development. These observations indicate the existence of REV3L as a scarce protein, of approximately the full predicted size, whose level may impose severe constraints on the assembly of pol ζ in X. laevis.  相似文献   
64.
The squamates are composed of many taxa, among which there is morphological variation in the vomeronasal organ (VNO). To elucidate the evolution of chemoreception in squamate reptiles, morphological data from the VNO from a variety of squamate species is required. In this study, the morphology of the VNO of the grass lizard Takydromus tachydromoides was examined using light and electron microscopy. The VNO consists of a pair of dome-shaped structures, which communicate with the oral cavity. There are no associated glandular structures. Microvilli are present on the apical surfaces of receptor cells in its sensory epithelium, as well as on supporting cells, and there are centrioles and ciliary precursor bodies on the dendrites. In addition to ciliated cells and basal cells in the non-sensory epithelium, there is a novel type of non-ciliated cell in T. tachydromoides. They have constricted apical cytoplasm and microvilli instead of cilia, and are sparsely distributed in the epithelium. Based on these results, the variation in the morphology of the VNO in scincomorpha, a representative squamate taxon, is discussed.  相似文献   
65.
66.
Scytalidoglutamic peptidase (SGP) from Scytalidium lignicolum is the founding member of the newly discovered\ family of peptidases, G1, so far found exclusively in fungi. The crystal structure of SGP revealed a previously undescribed fold for peptidases and a unique catalytic dyad of residues Gln53 and Glu136. Surprisingly, the beta-sandwich structure of SGP is strikingly similar to members of the carbohydrate-binding concanavalin A-like lectins/glucanases superfamily. By analogy with the active sites of aspartic peptidases, a mechanism employing nucleophillic attack by a water molecule activated by the general base functionality of Glu136 has been proposed. Here, we report the first crystal structures of SGP in complex with two transition state peptide analogs designed to mimic the tetrahedral intermediate of the proteolytic reaction. Of these two analogs, the one containing a central S-hydroxyl group is a potent sub-nanomolar inhibitor of SGP. The inhibitor binds non-covalently to the concave surface of the upper beta-sheet and enables delineation of the S4 to S3' substrate specificity pockets of the enzyme. Structural differences in these pockets account for the unique substrate preferences of SGP among peptidases having an acidic pH optimum. Inhibitor binding is accompanied by a structuring of the region comprising residues Tyr71-Gly80 from being mostly disordered in the apoenzyme and leading to positioning of crucial active site residues for establishing enzyme-inhibitor contacts. In addition, conformational rearrangements are seen in a disulfide bridged surface loop (Cys141-Cys148), which moves inwards, partially closing the open substrate binding cleft of the native enzyme. The non-hydrolysable scissile bond analog of the inhibitor is located in the active site forming close contacts with Gln53 and Glu136. The nucleophilic water molecule is displaced and a unique mode of binding is observed with the S-OH of the inhibitor occupying the oxyanion binding site of the proposed tetrahedral intermediate. Details of the enzyme-inhibitor interactions and mechanistic interpretations are discussed.  相似文献   
67.
68.
China is regarded by the World Health Organization as a major hot-spot region for Mycobacterium tuberculosis infection. Streptomycin has been deployed in China for over 50 years and is still widely used for tuberculosis treatment. We have developed a denaturing HPLC (DHPLC) method for detecting various gene mutations conferring drug resistance in M. tuberculosis. The present study focused on rpsL and rrs mutation analysis. Two hundred and fifteen M. tuberculosis clinical isolates (115 proved to be streptomycin-resistant and 100 susceptible by a routine proportional method) from China were tested to determine the streptomycin minimal inhibitory concentration (MIC), and subjected to DHPLC and concurrent DNA sequencing to determine rpsL and rrs mutations. The results showed that 85.2% (98/115) of streptomycin-resistant isolates harbored rpsL or rrs mutation, while rpsL mutation (76.5%, 88/115) dominated. MIC of 98 mutated isolates revealed no close correlation between mutation types and levels of streptomycin resistance. No mutation was found in any of the susceptible isolates. The DHPLC results were completely consistent with those of sequencing. The DHPLC method devised in this study can be regarded as a useful and powerful tool for detection of streptomycin resistance. This is the first report to describe DHPLC analysis of mutations in the rpsL and rrs genes of M. tuberculosis in a large number of clinical isolates.  相似文献   
69.
The Corynebacterium alkanolyticum xylEFGD gene cluster comprises the xylD gene that encodes an intracellular β-xylosidase next to the xylEFG operon encoding a substrate-binding protein and two membrane permease proteins of a xyloside ABC transporter. Cloning of the cluster revealed a recombinant β-xylosidase of moderately high activity (turnover for p-nitrophenyl-β-d-xylopyranoside of 111 ± 4 s−1), weak α-l-arabinofuranosidase activity (turnover for p-nitrophenyl-α-l-arabinofuranoside of 5 ± 1 s−1), and high tolerance to product inhibition (Ki for xylose of 67.6 ± 2.6 mM). Heterologous expression of the entire cluster under the control of the strong constitutive tac promoter in the Corynebacterium glutamicum xylose-fermenting strain X1 enabled the resultant strain X1EFGD to rapidly utilize not only xylooligosaccharides but also arabino-xylooligosaccharides. The ability to utilize arabino-xylooligosaccharides depended on cgR_2369, a gene encoding a multitask ATP-binding protein. Heterologous expression of the contiguous xylD gene in strain X1 led to strain X1D with 10-fold greater β-xylosidase activity than strain X1EFGD, albeit with a total loss of arabino-xylooligosaccharide utilization ability and only half the ability to utilize xylooligosaccharides. The findings suggest some inherent ability of C. glutamicum to take up xylooligosaccharides, an ability that is enhanced by in the presence of a functional xylEFG-encoded xyloside ABC transporter. The finding that xylEFG imparts nonnative ability to take up arabino-xylooligosaccharides should be useful in constructing industrial strains with efficient fermentation of arabinoxylan, a major component of lignocellulosic biomass hydrolysates.  相似文献   
70.
Previous studies have demonstrated antidiabetic effects for rooibos (Aspalathus linearis) and aspalathin (ASP), one of its main polyphenols. Rooibos, an endemic plant of South Africa, is well-known for its use as herbal tea. Green (‘unfermented’) rooibos has been shown to contain more ASP than ‘fermented’ rooibos tea, currently the major product. In the present study, we investigated the antidiabetic effect of green rooibos extract (GRE) through studies on glucose uptake in L6 myotubes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic KK-Ay mice. GRE increased glucose uptake under insulin absent condition and induced phosphorylation of 5′-adenosine monophosphate-activated protein kinase (AMPK) in L6 myotubes as previously demonstrated for ASP. In addition to AMPK, GRE also promoted phosphorylation of Akt, another promoter of glucose transporter 4 (GLUT4) translocation, in L6 myotubes unlike ASP, suggesting an involvement of GRE component(s) other than ASP in Akt phosphorylation. Promotion of GLUT4 translocation to the plasma membrane by GRE in L6 myotubes was demonstrated by Western blotting analysis. GRE suppressed the advanced glycation end products (AGEs)-induced increase in ROS levels in RIN-5F pancreatic β-cells. Subchronic feeding with GRE suppressed the increase in fasting blood glucose levels in type 2 diabetic model KK-Ay mice. These in vitro and in vivo results strongly suggest that GRE has antidiabetic potential through multiple modes of action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号