首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1783篇
  免费   95篇
  国内免费   1篇
  1879篇
  2021年   19篇
  2020年   15篇
  2019年   19篇
  2018年   21篇
  2017年   16篇
  2016年   26篇
  2015年   55篇
  2014年   57篇
  2013年   108篇
  2012年   83篇
  2011年   88篇
  2010年   64篇
  2009年   55篇
  2008年   71篇
  2007年   83篇
  2006年   79篇
  2005年   86篇
  2004年   87篇
  2003年   101篇
  2002年   79篇
  2001年   54篇
  2000年   43篇
  1999年   45篇
  1998年   22篇
  1997年   17篇
  1996年   14篇
  1995年   16篇
  1994年   18篇
  1993年   12篇
  1992年   29篇
  1991年   19篇
  1990年   21篇
  1989年   34篇
  1988年   21篇
  1987年   28篇
  1986年   37篇
  1985年   21篇
  1984年   33篇
  1983年   14篇
  1982年   18篇
  1981年   20篇
  1978年   9篇
  1977年   8篇
  1975年   8篇
  1974年   12篇
  1973年   9篇
  1972年   8篇
  1969年   10篇
  1968年   10篇
  1967年   10篇
排序方式: 共有1879条查询结果,搜索用时 10 毫秒
41.
The order Parmales (Heterokontophyta) is a group of small-sized unicellular marine phytoplankton, which is distributed widely from tropical to polar waters. The cells of Parmales are surrounded by a distinctive cell wall, which consists of several siliceous plates fitting edge to edge. Phylogenetic and morphological analyses suggest that Parmales is one of the key organisms for elucidating the evolutionary origin of Bacillariophyceae (diatoms), the most successful heterokontophyta. The effects of silicon-limitation on growth and morphogenesis of plates were studied using a strain of Triparma laevis NIES-2565, which was cultured for the first time in artificial sea water. The cells of T. laevis were surrounded by eight plates when grown with sufficient silicon. However, plate formation became incomplete when cells were cultured in a medium containing low silicate (ca. <10 µM). Cells finally lost almost all plates in a medium containing silicate concentrations lower than ca. 1 µM. However, silicon-limitation did not affect growth rate; cells continued to divide without changing their growth rate, even after all plates were lost. Loss of plates was reversible; when cells without plates were transferred to a medium containing sufficient silicate, regeneration of shield and ventral plates was followed by the formation of girdle and triradiate plates. The results indicate that the response to silicon-limitation of T. laevis is different from that of diatoms, where cell division becomes inhibited under such conditions.  相似文献   
42.

Background

YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown.

Methods

In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs) (rs28365859, rs11655548, and rs9393) and DISC1 SNP (rs821616) on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume.

Results

Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume.

Conclusions

These different effects of the YWHAE (rs28365859) genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia.  相似文献   
43.
Cynomolgus macaques (Macaca fascicularis, Mafa) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex polymorphic regions. The current information on the polymorphism or diversity of the polygenetic Mafa class I A loci is limited in comparison to the more commonly studied rhesus macaque Mafa class I A loci. Therefore, in this paper, to better elucidate the degree and types of polymorphisms and genetic differences of Mafa-A1 among three native Southeast Asian populations (Indonesian, Vietnamese, and Filipino) and to investigate how the allele differences between macaques and humans might have evolved to affect their respective immune responses, we identified 83 Mafa-A loci-derived alleles by DNA sequencing of which 66 are newly described. Most alleles are unique to each population, but seven of the most frequent alleles were identical in sequence to some alleles in other macaque species. We also revealed (1) the large and dynamic genetic and structural differences and similarities in allelic variation by analyzing the population allele frequencies, Hardy-Weinberg’s equilibrium, heterozygosity, nucleotide diversity profiles, and phylogeny, (2) the difference in genetic structure of populations by Wright’s FST statistic and hierarchical analysis of molecular variance, and (3) the different demographic and selection pressures on the three populations by performing Tajima’s D test of neutrality. The large level of diversity and polymorphism at the Mafa-A1 was less evident in the Filipino than in the Vietnam or the Indonesian populations, which may have important implications in animal capture, selection, and breeding for medical research.  相似文献   
44.
We have isolated four strains of Rhodococcus which specifically degrade estrogens by using enrichment culture of activated sludge from wastewater treatment plants. Strain Y 50158, identified as Rhodococcus zopfii, completely and rapidly degraded 100 mg of 17beta-estradiol, estrone, estriol, and ethinyl estradiol/liter, as demonstrated by thin-layer chromatography and gas chromatography-mass spectrometry analyses. Strains Y 50155, Y 50156, and Y 50157, identified as Rhodococcus equi, showed degradation activities comparable with that of Y 50158. Using the random amplified polymorphism DNA fingerprinting test, these three strains were confirmed to have been derived from different sources. R. zopfii Y 50158, which showed the highest activity among these four strains, revealed that the strain selectively degraded 17beta-estradiol during jar fermentation, even when glucose was used as a readily utilizable carbon source in the culture medium. Measurement of estrogenic activities with human breast cancer-derived MVLN cells showed that these four strains each degraded 100 mg of 17beta-estradiol/liter to 1/100 of the specific activity level after 24 h. It is thus suggested that these strains degrade 17beta-estradiol into substances without estrogenic activity.  相似文献   
45.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   
46.
Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP-GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.  相似文献   
47.
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs.  相似文献   
48.
Abstract

Reaction of 9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-7-methylguaninium iodide (2a) with hydrogen peroxide in acetic acid gave the corresponding 7-methyl-8-oxoguanosine derivative (3a) in good yield. Deprotection of 3a easily gave 7-methyl-8-oxoguanosine (1), which is well-known as an immunomodulator. Substitution of acetyl group at the N-position of guanine ring accelerated the oxidation reaction of the 7-methylguaninium iodide.

  相似文献   
49.
Mitochondrial oxidative stress is considered as a key accelerator of fibrosis in various organs including the liver. However, the production of oxidative stress and progression of liver fibrosis may merely represent the independent consequences of hepatocellular injury caused by the primary disease. Because of a lack of appropriate experimental models to evaluate the sole effects of oxidative stress, it is virtually unknown whether this stress is causatively linked to the progression of liver fibrosis. Here, we examined the direct effects of mitochondrial reactive oxygen species (ROS) on the progression of high fat/calorie diet-induced steatohepatitis using Tet-mev-1 mice, in which a mutated succinate dehydrogenase transgene impairs the mitochondrial electron transport and generates an excess amount of ROS in response to doxycycline administration. Wild type and Tet-mev-1 mice that had been continuously given doxycycline-containing water were subsequently fed either normal chow or a cholesterol-free high-fat/high-sucrose diet for 4 months at approximately 1 or 2 years of age. Histopathological examinations indicated that neither the mitochondrial ROS induced in Tet-mev-1 mice nor the feeding of wild type animals with high-fat/high-sucrose diet alone caused significant liver fibrosis. Only when the Tet-mev-1 mice were fed a high-fat/high-sucrose diet, it induced lipid peroxidation in hepatocytes and enhanced hepatic CC chemokine expression. These events were accompanied by increased infiltration of CCR5-positive cells and activation of myofibroblasts, resulting in extensive liver fibrosis. Interestingly, this combinatorial effect of mitochondrial ROS and excess fat/calorie intake on liver fibrosis was observed only in 2-year-old Tet-mev-1 mice, not in the 1-year-old animals. Collectively, these results indicate that mitochondrial ROS in combination with excess fat/calorie intake accelerates liver fibrosis by enhancing CC chemokine production in aged animals. We have provided a good experimental model to explore how high fat/calorie intake increases the susceptibility to nonalcoholic steatohepatitis in aged individuals who have impaired mitochondrial adaptation.  相似文献   
50.
F1-ATPase is the major enzyme for ATP synthesis in mitochondria, chloroplasts, and bacterial plasma membranes. F1-ATPase obtained from thermophilic bacterium PS3 (TF1) is the only ATPase which can be reconstituted from its primary structure. Its beta subunit constitutes the catalytic site, and is capable of forming hybrid F1's with E. coli alpha and gamma subunits. Since the stability of TF1 resides in its primary structure, we cloned a gene coding for TF1, and the primary structure of the beta subunit was deduced from the nucleotide sequence of the gene to compare the sequence with those of beta's of three major categories of F1's; prokaryotic membranes, chloroplasts, and mitochondria. The following results were obtained. Homology: The primary structure of the TF1 beta subunit (473 residues, Mr = 51,995.6) showed 89.3% homology with 270 residues which are identical in the beta subunits from human mitochondria, spinach chloroplasts, and E. coli. It contained regions homologous to several nucleotide-binding proteins. Secondary structure: The deduced alpha-helical (30.1%) and beta-sheet (22.3%) contents were consistent with those determined from the circular dichroism spectra. Residues forming reverse turns (Gly and Pro) were highly conserved among the F1 beta subunits. Substituted residues and stability of TF1: We compared the amino acid sequence of the TF1 beta subunit with those of the other F1 beta subunits mentioned above. The observed substitutions in the thermophilic subunit increased its propensities to form secondary structures, and its external polarity to form tertiary structure. Codon usage: The codon usage of the TF1 beta gene was found to be unique. The changes in codons that achieved these amino acid substitutions were much larger than those caused by minimal mutations, and the third letters of the optimal codons were either guanine or cytosine, except in codons for Gln, Lys, and Glu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号