首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   22篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   11篇
  2014年   14篇
  2013年   28篇
  2012年   15篇
  2011年   29篇
  2010年   7篇
  2009年   11篇
  2008年   18篇
  2007年   20篇
  2006年   18篇
  2005年   19篇
  2004年   16篇
  2003年   16篇
  2002年   17篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1996年   3篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1987年   4篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
  1974年   3篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
101.
102.
The flavonoid constituents in fresh florets of the three distinctive cultivars of Carthamus tinctorius L. were purified and identified to investigate flavonoid biosynthesis in the petals. From the orange flower of cv. Kenba (K.), four new compounds, anhydrosafflor yellow B (1), two kaempferols, 9 and 13, and a quercetin, 17, were isolated, as well as the twelve known compounds, and their structures were determined by spectral data, chemical reactions, and molecular mechanics calculations. From the yellow flower of cv. Ogon-hanagasa (O.), two flavonols and two quinochalcones, and from the white flower of cv. Shiro-bana (S.), three flavonois were isolated. These compounds were the same as those contained in cv. K. To compare the flavonoid constituents among the three cultivars, crude extracts were analyzed by a LC/PDA/MS system. In cv. K., six quinochalcones and eleven flavonols were identified. In cv. O., three quinochalcones and nine flavonols were identified, but the red pigment, carthamin (4), and its precursor, precarthamin (3), were not detected. In cv. S., four flavonols without a 6-hydroxyl group were identified. On the basis of a comparative study on the constituents among these three cultivars, a possible biosynthetic pathway to form quinochalcones via the intermediate, pentahydroxychalcone (19), is proposed.  相似文献   
103.
In vitro evolution of the polyhydroxyalkanoate (PHA) synthase gene from Pseudomonas sp. 61-3 (phaC1(Ps)) has been performed to generate highly active enzymes. In this study, a positive mutant of PHA synthase, Glu130Asp (E130D), was characterized in detail in vivo and in vitro. Recombinant Escherichia coli strain JM109 harboring the E130D mutant gene accumulated 10-fold higher (1.0 wt %) poly(3-hydroxybutyrate) [P(3HB)] from glucose, compared to recombinant E. coli harboring the wild-type PHA synthase gene (0.1 wt %). Recombinant E. coli strain LS5218 harboring the E130D PHA synthase gene grown on dodecanoate produced more poly(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] (20 wt %) copolymer than an LS5218 strain harboring the wild-type PHA synthase gene (13 wt %). The E130D mutation also resulted in the production of copolymer with a slight increase in 3HB composition, compared to copolymer produced by the wild-type PHA synthase. In vitro enzyme activities of the E130D PHA synthase toward various 3-hydroxyacyl-CoAs (4-10 carbons in length) were all higher than those of the wild-type enzyme. The combination of the E130D mutation with other beneficial mutations, such as Ser325Thr and Gln481Lys, exhibited a synergistic effect on in vivo PHA production and in vitro enzyme activity. Interestingly, gel-permeation chromatography analysis revealed that the E130D mutation also had a synergistic effect on the molecular weight of polymers produced in vivo.  相似文献   
104.
In our previous study, in vitro evolution of type II polyhydroxyalkanoate (PHA) synthase (PhaC1Ps) from Pseudomonas sp. 61-3 yielded eleven mutant enzymes capable of synthesizing homopolymer of (R)-3-hydroxybutyrate [P(3HB)] in recombinant Escherichia coli JM109. These recombinant strains were capable of accumulating up to approximately 400-fold more P(3HB) than strains expressing the wild-type enzyme. These mutations enhanced the ability of the enzyme to specifically incorporate the 3HB-coenzyme A (3HB-CoA) substrate or improved catalytic efficiency toward the various monomer substrates of C4 to C12 (R)-3-hydroxyacyl-CoAs which can intrinsically be channeled by PhaC1Ps into P(3HB-co-3HA) copolymerization. In this study, beneficial amino acid substitutions of PhaC1Ps were analyzed based on the accumulation level and the monomer composition of P(3HB-co-3HA) copolymers generated by E. coli LS5218 [fadR601 atoC(Con)] harboring the monomer supplying enzyme genes. Substitutions of Ser by Thr(Cys) at position 325 were found to lead to an increase in the total amount of P(3HB-co-3HA) accumulated, whereas 3HB fractions in the P(3HB-co-3HA) copolymer were enriched by substitutions of Gln by Lys(Arg, Met) at position 481. This strongly suggests that amino acid substitutions at positions 325 and 481 are responsible for synthase activity and/or substrate chain-length specificity of PhaC1Ps. These in vivo results were supported by the in vitro results obtained from synthase activity assays using representative single and double mutants and synthetic substrates, (R,S)-3HB-CoA and (R,S)-3-hydroxydecanoyl-CoA. Notably, the position 481 was found to be a determinant for substrate chain-length specificity of PhaC1Ps.  相似文献   
105.
106.
Tube‐nesting bees and wasps were collected with bamboo tube nest traps in a cherry blossom forest and an old secondary forest in Tama Forest Science Garden in the western suburbs of Tokyo. Curtain type traps, in which bamboo tubes were vertically arranged, attracted more bees and wasps to nests than bundle type traps, in which bamboo tubes were bundled haphazardly. The attractiveness of small tubes was similar between small tube traps, which were only composed of small tubes (about 4 mm in diameter), and size mixture traps, which set small tubes together with larger tubes, indicating that the presence of the larger species did not affect the nesting of small species. In the cherry forest, which was characterized by the sparse distribution of deciduous cherry trees with a thin canopy layer and rich growth of weeds, Megachilidae, Colletidae, Sphecidae and Eumenidae were common. In the shady secondary forest, where evergreen trees (Abies firma Sieb. et Zucc., Quercus glauca Thunb.) and shrubs (Aucuba japonica Thunb., Eurya japonica Thunb., Camellia japonica L.) were prevalent, Pompilidae was abundant. Among five species of Crabronidae recorded in this study, four were collected mostly in the cherry forest, whereas the most abundant, Trypoxylon malaisei Gussakovskij, was also common in the secondary forest. Likewise, Auplopus carbonarius (Scopoli) (Pompilidae) was common in the secondary forest and not rare in the cherry forest. These results suggest that the tube‐nesting bees and wasps can be a good bioindicator for monitoring environment.  相似文献   
107.
108.

Objectives

This study aimed to carry out a histological examination of the temporomandibular joint (TMJ) in ank mutant mice and to identify polymorphisms of the human ANKH gene in order to establish the relationship between the type of temporomandibular disorders (TMD) and ANKH polymorphisms.

Materials and Methods

Specimens from the TMJ of ank mutant and wild-type mice were inspected with a haematoxylin and eosin staining method. A sample of 55 TMD patients were selected. Each was examined with standard clinical procedures and genotyping techniques.

Results

The major histological finding in ank mutant mice was joint space narrowing. Within TMD patients, closed lock was more prevalent among ANKH-OR homozygotes (p = 0.011, OR = 7.7, 95% CI 1.6–36.5) and the elder (p = 0.005, OR = 2.4, 95% CI 1.3–4.3).

Conclusions

Fibrous ankylosis was identified in the TMJ of ank mutant mice. In the human sample, ANKH-OR polymorphism was found to be a genetic marker associated with TMJ closed lock. Future investigations correlating genetic polymorphism to TMD are indicated.  相似文献   
109.
Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2), KG-1 (ABCB1) and HepG2 cells (ABCB1 and ABCG2). Interestingly, although side population (SP) cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.  相似文献   
110.
Biopolymers consist of three major classes, i.e., polynucleotides (DNA, RNA), polypeptides (proteins) and polysaccharides (sugar chains). It is widely accepted that polynucleotides and polypeptides play fundamental roles in the pathogenesis of neurodegenerative diseases. But, sugar chains have been poorly studied in this process, and their biological/clinical significance remains largely unexplored. Amyotrophic lateral sclerosis (ALS) is a motoneuron-degenerative disease, the pathogenesis of which requires both cell autonomous and non-cell autonomous processes. Here, we investigated the role of keratan sulfate (KS), a sulfated long sugar chain of proteoglycan, in ALS pathogenesis. We employed ALS model SOD1G93A mice and GlcNAc6ST-1−/− mice, which are KS-deficient in the central nervous system. Unexpectedly, SOD1G93AGlcNAc6ST-1−/− mice exhibited a significantly shorter lifespan than SOD1G93A mice and an accelerated appearance of clinical symptoms (body weight loss and decreased rotarod performance). KS expression was induced exclusively in a subpopulation of microglia in SOD1G93A mice, and became detectable around motoneurons in the ventral horn during the early disease phase before body weight loss. During this phase, the expression of M2 microglia markers was transiently enhanced in SOD1G93A mice, while this enhancement was attenuated in SOD1G93AGlcNAc6ST-1−/− mice. Consistent with this, M2 microglia were markedly less during the early disease phase in SOD1G93AGlcNAc6ST-1−/− mice. Moreover, KS expression in microglia was also detected in some human ALS cases. This study suggests that KS plays an indispensable, suppressive role in the early phase pathogenesis of ALS and may represent a new target for therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号