首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2018篇
  免费   202篇
  国内免费   2篇
  2222篇
  2022年   10篇
  2021年   26篇
  2020年   8篇
  2019年   12篇
  2018年   25篇
  2017年   28篇
  2016年   31篇
  2015年   54篇
  2014年   81篇
  2013年   113篇
  2012年   105篇
  2011年   102篇
  2010年   72篇
  2009年   55篇
  2008年   84篇
  2007年   112篇
  2006年   124篇
  2005年   90篇
  2004年   142篇
  2003年   104篇
  2002年   81篇
  2001年   71篇
  2000年   61篇
  1999年   50篇
  1998年   30篇
  1997年   27篇
  1996年   30篇
  1995年   38篇
  1994年   41篇
  1993年   27篇
  1992年   40篇
  1991年   33篇
  1990年   36篇
  1989年   21篇
  1988年   23篇
  1987年   21篇
  1986年   11篇
  1985年   19篇
  1984年   15篇
  1982年   17篇
  1981年   17篇
  1980年   10篇
  1979年   17篇
  1978年   13篇
  1977年   23篇
  1976年   7篇
  1975年   10篇
  1974年   8篇
  1973年   6篇
  1971年   7篇
排序方式: 共有2222条查询结果,搜索用时 15 毫秒
61.
Human induced pluripotent stem (hiPS) cells have great potential for regenerative medicine and drug discovery. It is essential to establish highly efficient and reliable methods for hiPS cell cryopreservation. We examined cryopreservation of hiPS cells by the vitrification method using a dimethyl sulfoxide Me2SO-free and serum-free medium, VS2E, that uses Euro-Collins solution as a base with 40% (v/v) ethylene glycol and 10% (w/v) polyethylene glycol as cryoprotectants. This combination of vitrification and cryoprotectants resulted in a higher recovery rate of hiPS cells than with a commercially-available vitrification solution, DAP213, which contained Me2SO and serum components. After vitrification and warming, hiPS cells were cultured easily. Even after several subculturing steps, cells expressed undifferentiated cell markers, such as Oct-3/4 and SSEA-4, and also exhibited alkaline phosphatase activity. The pluripotency of hiPS cells was maintained, as demonstrated by teratoma formation upon hiPS cell transplantation into severe combined immunodeficient mice. Thus, we successfully preserved hiPS cells under liquid nitrogen with high efficiency using Me2SO-free vitrification solution and rapid cooling.  相似文献   
62.
Ninety-six alleles (36 alleles of Japanese and 60 of Caucasian origin) from forty-eight patients with mucopolysaccharidosis IVA were investigated for structural gene alterations using Southern blot analysis. All patients had a previously demonstrated deficiency of N-acetylgalactosamine-6-sulfate-sulfatase and exhibited a wide spectrum of clinical severity. Initially, using the fulllength cDNA as a probe, five of 36 chromosomes from the Japanese patients revealed similar rearrangements with respect to DNA digested with BamHI, SacI, and XhoI. Subsequent analysis using seven genomic fragments, covering the entire gene, enhanced the detection of aberrant fragments produced by the above restriction enzymes. Conversely, the 60 chromosomes of Caucasian origin revealed no evidence of large structural rearrangements when analyzed by these methods. There was a statistically significant difference between the two populations (P < 0.01). A severely affected Japanese patient showed structural rearrangements on both chromosomes by means of BamHI blots. An 8.0-kb fragment and a highly polymorphic 7.0-kb to 11.0-kb fragment present in normal individuals disappeared and two aberrant fragments of 11.5 kb and 12.0 kb were observed. Three other Japanese patients also showed these two aberrant fragments, in addition to the normal fragment pattern, and were thus heterozygous for this rearrangement. Interpretation of Southern blots was difficult because of the complexity of polymorphic bands resulting from variable number of tandem repeat elements. However, by utilizing these aberrant fragments or polymorphic bands, carrier detection was effective, even in families with poorly characterized mutations. Hybridization with probe MG-A (5end genomic probe in intron 1) showed a 8.4-kb fragment in BamHI blots of one Japanese and one Caucasian patient; XhoI, SacI, and EcoRI blots were normal. Since this BamHI alteration was also observed in one normal control, it appears to be a rare nonpathological polymorphism.  相似文献   
63.
64.
65.
66.
Honey bee (Apis mellifera) workers contribute to the maintenance of colonies in various ways. The primary functions of workers are divided into two types depending on age: young workers (nurses) primarily engage in such behaviors as cleaning and food handling within the hive, whereas older workers (foragers) acquire floral nutrients beyond the colony. Concomitant with this age‐dependent change in activity, physiological changes occur in the tissues and organs of workers. Nurses supply younger larvae with honey containing high levels of glucose and supply older larvae with honey containing high levels of fructose. Given that nurses must determine both the concentration and type of sugar used in honey, gustatory receptors (Gr) expressed in the chemosensory organs likely play a role in distinguishing between sugars. Glucose is recognized by Gr1 in honey bees (AmGr1); however, it remains unclear which Gr are responsible for fructose recognition. This study aimed to identify fructose receptors in honey bees and reported that AmGr3, when transiently expressed in Xenopus oocytes, responded only to fructose, and to no other sugars. We analyzed expression levels of AmGr3 to identify which tissues and organs of workers are involved in fructose recognition and determined that expression of AmGr3 was particularly high in the antennae and legs of nurses. Our results suggest that nurses use their antennae and legs to recognize fructose, and that AmGr3 functions as an accurate nutrient sensor used to maintain food quality in honey bee hives.  相似文献   
67.
68.
In the two cold-adapted monomeric isocitrate dehydrogenases from psychrophilic bacteria, Colwellia maris and Colwellia psychrerythraea (CmIDH and CpIDH, respectively), the combined substitutions of amino acid residues between the Leu693, Leu724 and Phe735 residues of CmIDH and the corresponding Phe693, Gln724 and Leu735 residues of CpIDH were introduced by site-directed mutagenesis. A double mutant of CmIDH substituted its Leu724 and Phe735 residues by the corresponding ones of CpIDH, CmL724Q/F735L, and the triple mutant of CpIDH, CpF693L/Q724L/L735F, showed the most decrease and increase of activity, respectively, of each wild-type and its all mutated enzymes. In the case of CmIDH, the substitutions of these three amino acid residues resulted in the decrease of catalytic activity and thermostability for activity, but the combined substitutions of amino acid residues did not necessarily exert additive effects on these properties. On the other hand, similar substitutions in CpIDH had quite opposite effects to CmIDH, and the effects of the combined substitutions were additive. All multiple mutants of CmIDH and CpIDH showed lower and higher catalytic efficiency (k cat/K m) values than the respective wild-type enzymes. Single and multiple mutations of the substituted amino acid residues in the CmIDH and CpIDH led to the increase and decrease of sensitivity to tryptic digestion, indicating that the stability of protein structure was decreased and increased by the mutations, respectively.  相似文献   
69.
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号