首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   980篇
  免费   45篇
  国内免费   2篇
  1027篇
  2022年   5篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   15篇
  2016年   15篇
  2015年   23篇
  2014年   37篇
  2013年   71篇
  2012年   49篇
  2011年   57篇
  2010年   40篇
  2009年   25篇
  2008年   32篇
  2007年   51篇
  2006年   51篇
  2005年   41篇
  2004年   74篇
  2003年   53篇
  2002年   39篇
  2001年   9篇
  2000年   6篇
  1999年   11篇
  1998年   11篇
  1997年   16篇
  1996年   16篇
  1995年   18篇
  1994年   24篇
  1993年   16篇
  1992年   11篇
  1991年   14篇
  1990年   11篇
  1989年   6篇
  1988年   18篇
  1987年   10篇
  1986年   5篇
  1985年   14篇
  1984年   8篇
  1983年   5篇
  1982年   10篇
  1981年   14篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   13篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1973年   5篇
  1972年   4篇
排序方式: 共有1027条查询结果,搜索用时 10 毫秒
121.
Ten cDNAs for drought-inducible genes were isolated using differential screening of a cDNA library prepared from 10-hr dehydrated cowpea plants,Vigna unguiculata (S. Iuchi, K. Yamaguchi-Shinozaki, T. Urao, T. Terao, K. Shinozaki; Plant Cell Physiology, 1996 in press). Two of the cDNA clones, designated CPRD12 and CPRD46, were sequenced and characterized. The CPRD12 and CPRD46 cDNAs encode putative proteins related to nonmetallo-short-chain alcohol dehydrogenase (CPRD12) and chloroplastic lipoxygenase (CPRD46). Northern blot analysis revealed that these genes are induced by high-salinity stress and exogenous abscisic acid, but not by cold stress. The CPRD46 gene is also responsive to heat stress and methyl jasmonate and salicylic acid. Genomic Southern blot analysis suggested that CPRD12 constitutes a small gene family, but that CPRD46 is a single copy gene. We discuss the possible functions of these two CPRD gene products under drought stress.  相似文献   
122.
Ninety-six alleles (36 alleles of Japanese and 60 of Caucasian origin) from forty-eight patients with mucopolysaccharidosis IVA were investigated for structural gene alterations using Southern blot analysis. All patients had a previously demonstrated deficiency of N-acetylgalactosamine-6-sulfate-sulfatase and exhibited a wide spectrum of clinical severity. Initially, using the fulllength cDNA as a probe, five of 36 chromosomes from the Japanese patients revealed similar rearrangements with respect to DNA digested with BamHI, SacI, and XhoI. Subsequent analysis using seven genomic fragments, covering the entire gene, enhanced the detection of aberrant fragments produced by the above restriction enzymes. Conversely, the 60 chromosomes of Caucasian origin revealed no evidence of large structural rearrangements when analyzed by these methods. There was a statistically significant difference between the two populations (P < 0.01). A severely affected Japanese patient showed structural rearrangements on both chromosomes by means of BamHI blots. An 8.0-kb fragment and a highly polymorphic 7.0-kb to 11.0-kb fragment present in normal individuals disappeared and two aberrant fragments of 11.5 kb and 12.0 kb were observed. Three other Japanese patients also showed these two aberrant fragments, in addition to the normal fragment pattern, and were thus heterozygous for this rearrangement. Interpretation of Southern blots was difficult because of the complexity of polymorphic bands resulting from variable number of tandem repeat elements. However, by utilizing these aberrant fragments or polymorphic bands, carrier detection was effective, even in families with poorly characterized mutations. Hybridization with probe MG-A (5end genomic probe in intron 1) showed a 8.4-kb fragment in BamHI blots of one Japanese and one Caucasian patient; XhoI, SacI, and EcoRI blots were normal. Since this BamHI alteration was also observed in one normal control, it appears to be a rare nonpathological polymorphism.  相似文献   
123.
124.
125.
126.

Background

Loss to follow up (LTFU) is an important prognostic factor in patients with HIV-1 infection. The impact of illicit drug use on LTFU of patients with HIV-1 infection is unknown in Japan.

Methods

A single center observational study was conducted to elucidate the impact of illicit drug use on LTFU at a large HIV clinic in Tokyo. LTFU was defined as those who discontinued their visits to the clinic for at least 12 months and were not known to be under the care of other facilities or have died within 12 months of their last visit. Patients who first visited the clinic between January 2005 and August 2010 were enrolled. Information on illicit drug use was collected in a structured interview and medical charts. Comparison of the effects of illicit drug use and no use on LTFU was conducted by uni- and multi-variate Cox hazards models as the primary exposure.

Results

The study subjects were 1,208 patients, mostly Japanese men, of relatively young age, and infected through homosexual contact. A total of 111 patients (9.2%) were LTFU (incidence: 24.9 per 1,000 person-years). Among illicit drug users and non users, 55 (13.3%) and 56 (7.1%) patients, respectively, were LTFU, with incidence of 35.7 and 19.2 per 1,000 person-years, respectively. Uni- and multi-variate analyses showed that illicit drug use was a significant risk for LTFU (HR=1.860; 95% CI, 1.282-2.699; p=0.001) (adjusted HR=1.544; 95% CI, 1.028-2.318; p=0.036). Multivariate analysis also identified young age, high CD4 count, no antiretroviral therapy, and no health insurance as risk factors for LTFU.

Conclusions

The incidence of LTFU among illicit drug users was almost twice higher than that among non users. Effective intervention for illicit drug use in this population is warranted to ensure proper treatment and prevent the spread of HIV.  相似文献   
127.
Muscarinic acetylcholine receptors purified from porcine cerebra or atria were covalently labeled with [3H]propylbenzilylcholine mustard ([3H]PrBCM), and then the labeled receptors were subjected to limited hydrolysis with trypsin, V8 protease, and lysyl endopeptidase, followed by analysis involving sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fluorography, autoradiography, or immunostaining. The labeled peptides were located on the basis of their reactivity with antibodies raised against three synthetic peptides with partial sequences of the m1 or m2 receptor, and of their sensitivity to endoglycosidase F, which was taken as evidence that they contain glycosylation sites near the N terminus. The [3H]PrBCM-binding site in both cerebral and atrial receptors was found to be located between the N terminus and the second intracellular loop, because the size of the smallest deglycosylated peptide that contained both the [3H]PrBCM-binding and glycosylation sites was approximately 16 kDa. Cerebral receptors were 32P-phosphorylated with protein kinase C, and the major phosphorylation sites in cerebral muscarinic receptors were found to be located in a C-terminal segment including a part of the third intracellular loop, because a 32P-labeled peptide of 12-14 kDa reacted with anti-(m1 C-terminal peptide) antiserum. The presence of an intramolecular disulfide bond, probably between Cys 98 and Cys 178 in the first and second extracellular loops, respectively, was suggested by the finding that a peptide of approximately 17 kDa containing the [3H]PrBCM-binding site, but not the glycosylation sites, was partly converted to a peptide of approximately 12 kDa on treatment with beta-mercaptoethanol.  相似文献   
128.
Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N2 inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C‐15, Ch‐191 and CP‐36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar ‘Bivanij’ as well as studied the mechanism underlying the improvement of N2 fixation efficiency. Our data revealed that C‐15 strain manifested the most efficient N2 fixation in comparison with Ch‐191 or CP‐36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C‐15 nodules. Nodule specific activity was significantly higher in C‐15 combination, partially as a result of higher electron allocation to N2 versus H+. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch‐191 or CP‐36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C‐15 strain. As a result, the best symbiotic efficiency observed with C‐15‐induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C‐15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism.  相似文献   
129.
Shinohara M  Sakai K  Shinohara A  Bishop DK 《Genetics》2003,163(4):1273-1286
Two RecA-like recombinases, Rad51 and Dmc1, function together during double-strand break (DSB)-mediated meiotic recombination to promote homologous strand invasion in the budding yeast Saccharomyces cerevisiae. Two partially redundant proteins, Rad54 and Tid1/Rdh54, act as recombinase accessory factors. Here, tetrad analysis shows that mutants lacking Tid1 form four-viable-spore tetrads with levels of interhomolog crossover (CO) and noncrossover recombination similar to, or slightly greater than, those in wild type. Importantly, tid1 mutants show a marked defect in crossover interference, a mechanism that distributes crossover events nonrandomly along chromosomes during meiosis. Previous work showed that dmc1Delta mutants are strongly defective in strand invasion and meiotic progression and that these defects can be partially suppressed by increasing the copy number of RAD54. Tetrad analysis is used to show that meiotic recombination in RAD54-suppressed dmc1Delta cells is similar to that in tid1; the frequency of COs and gene conversions is near normal, but crossover interference is defective. These results support the proposal that crossover interference acts at the strand invasion stage of recombination.  相似文献   
130.
Although the Sw‐5 gene cluster has been cloned, and Sw‐5b has been identified as the functional gene copy that confers resistance to Tomato spotted wilt virus (TSWV), its avirulence (Avr) determinant has not been identified to date. Nicotiana tabacum ‘SR1‘ plants transformed with a copy of the Sw‐5b gene are immune without producing a clear visual response on challenge with TSWV, whereas it is shown here that N. benthamiana transformed with Sw‐5b gives a rapid and conspicuous hypersensitive response (HR). Using these plants, from all structural and non‐structural TSWV proteins tested, the TSWV cell‐to‐cell movement protein (NSM) was confirmed as the Avr determinant using a Potato virus X (PVX) replicon or a non‐replicative pEAQ‐HT expression vector system. HR was induced in Sw‐5b‐transgenic N. benthamiana as well as in resistant near‐isogenic tomato lines after agroinfiltration with a functional cell‐to‐cell movement protein (NSM) from a resistance‐inducing (RI) TSWV strain (BR‐01), but not with NSM from a Sw‐5 resistance‐breaking (RB) strain (GRAU). This is the first biological demonstration that Sw‐5‐mediated resistance is triggered by the TSWV NSM cell‐to‐cell movement protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号