首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   980篇
  免费   45篇
  国内免费   2篇
  2022年   5篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   15篇
  2016年   15篇
  2015年   23篇
  2014年   37篇
  2013年   71篇
  2012年   49篇
  2011年   57篇
  2010年   40篇
  2009年   25篇
  2008年   32篇
  2007年   51篇
  2006年   51篇
  2005年   41篇
  2004年   74篇
  2003年   53篇
  2002年   39篇
  2001年   9篇
  2000年   6篇
  1999年   11篇
  1998年   11篇
  1997年   16篇
  1996年   16篇
  1995年   18篇
  1994年   24篇
  1993年   16篇
  1992年   11篇
  1991年   14篇
  1990年   11篇
  1989年   6篇
  1988年   18篇
  1987年   10篇
  1986年   5篇
  1985年   14篇
  1984年   8篇
  1983年   5篇
  1982年   10篇
  1981年   14篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   13篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1973年   5篇
  1972年   4篇
排序方式: 共有1027条查询结果,搜索用时 203 毫秒
101.
102.
Marine coccolithophorids (Haptophyceae) produce calcified scales “coccoliths” which are composed of CaCO3 and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO3 crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO3 crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO3 crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.  相似文献   
103.
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.  相似文献   
104.

Background

Despite being expensive, the standard combination of pegylated interferon (Peg-IFN)- α and ribavirin used to treat chronic hepatitis C (CH) results in a moderate clearance rate and a plethora of side effects. This makes it necessary to predict patient outcome so as to improve the accuracy of treatment. Although the antiviral mechanism of genetically altered IL28B is unknown, IL28B polymorphism is considered a good predictor of IFN combination treatment outcome.

Methodology

Using microarray, we quantified the expression profile of 237 IFN related genes in 87 CH liver biopsy specimens to clarify the relationship between IFN pathway and viral elimination, and to predict patients'' clinical outcome. In 72 out of 87 patients we also analyzed IL28B polymorphism (rs8099917).

Principal Findings

Five IFN related-genes (IFI27, IFI 44, ISG15, MX1, and OAS1) had expression levels significantly higher in nonresponders (NR) than in normal liver (NL) and sustained virological responders (SVR); this high expression was also frequently seen in cases with the minor (TG or GG) IL28B genotype. The expression pattern of 31 IFN related-genes also differed significantly between NR and NL. We predicted drug response in NR with 86.1% accuracy by diagonal linear discriminant analysis (DLDA).

Conclusion

IFN system dysregulation before treatment was associated with poor IFN therapy response. Determining IFN related-gene expression pattern based on patients'' response to combination therapy, allowed us to predict drug response with high accuracy. This method can be applied to establishing novel antiviral therapies and strategies for patients using a more individual approach.  相似文献   
105.
This study evaluated the accuracy of assessing step counts and energy costs under walking conditions altered by step frequency changes at given speeds using uni- (LC) and tri-axial accelerometers (AM, ASP). Healthy young men and women (n=18) volunteered as subjects. Nine tests were designed to manipulate three step frequencies, low (-15% of normal), normal, and high (+15%), at each walking speed (55, 75, and 95 m/min). A facemask connected to a Douglas bag was attached to subjects, who wore accelerometers around their waist. LC underestimated the step counts at normal or high step frequency at 55 m/min and AM also at all step frequencies at 55 m/min, whereas ASP did not in all trials. LC underestimated metabolic equivalents (METs) at low or normal step frequency at all walking speeds. AM underestimated METs at low step frequency at all walking speeds and at high step frequency of 95 m/min. ASP gave underestimates only at low step frequency of 95 m/min. The degree of the percentage error of METs for AM and ASP was affected by step frequency. Significant interaction between step frequency and speed was found that for LC. These results suggest that LC and AM can cause errors in step-count functions at a low walking speed. Furthermore, LC may show low accuracy of the METs measurement during walking altered according to step frequency and speed, whereas AM and ASP, which are tri-axial accelerometers, are more accurate but the degree of the percentage error is affected by step frequency.  相似文献   
106.
In a gene targeting experiment, the generation of a targeting construct often requires complex DNA manipulations. We developed a set of cassettes and plasmids useful for creating targeting vectors to modify the mammalian genome. A positive selection marker cassette (PGK/EM7p-npt), which included dual prokaryotic and eukaryotic promoters to permit consecutive selection for recombination in Escherichia coli and then in mouse embryonic stem cells, was flanked by two FRT-loxP sequences. The PGK/EM7p-npt cassette was placed between the minimum regions of a Tn7 transposable element for insertion into another DNA by means of Tn7 transposase in vitro. We also constructed a plasmid having a loxP-Zeo-loxP cassette between the modified Tn5 outer elements. These cassettes can be integrated randomly into a given genomic DNA through the in vitro transposition reaction, thus producing a collection of genomic segments flanked by loxP sites (floxed) at various positions without the use of restriction enzymes and DNA ligase. We confirmed that this system remarkably reduced the time and labor for the construction of complex gene targeting vectors.  相似文献   
107.
T-protein, a component of the glycine cleavage system, catalyzes the formation of ammonia and 5,10-methylenetetrahydrofolate from the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein. Several mutations in the human T-protein gene cause non-ketotic hyperglycinemia. To gain insights into the effect of disease-causing mutations and the catalytic mechanism at the molecular level, crystal structures of human T-protein in free form and that bound to 5-methyltetrahydrofolate (5-CH3-H4folate) have been determined at 2.0 A and 2.6 A resolution, respectively. The overall structure consists of three domains arranged in a cloverleaf-like structure with the central cavity, where 5-CH3-H4folate is bound in a kinked shape with the pteridine group deeply buried into the hydrophobic pocket and the glutamyl group pointed to the C-terminal side surface. Most of the disease-related residues cluster around the cavity, forming extensive hydrogen bonding networks. These hydrogen bonding networks are employed in holding not only the folate-binding space but also the positions and the orientations of alpha-helix G and the following loop in the middle region, which seems to play a pivotal role in the T-protein catalysis. Structural and mutational analyses demonstrated that Arg292 interacts through water molecules with the folate polyglutamate tail, and that the invariant Asp101, located close to the N10 group of 5-CH3-H4folate, might play a key role in the initiation of the catalysis by increasing the nucleophilic character of the N10 atom of the folate substrate for the nucleophilic attack on the aminomethyl lipoate intermediate. A clever mechanism of recruiting the aminomethyl lipoate arm to the reaction site seems to function as a way of avoiding the release of toxic formaldehyde.  相似文献   
108.
Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.  相似文献   
109.
We developed a non-radioactive and sensitive assay method for measurement of the HTL hydrolase (HTLase) activity in biological samples, using OPA as a fluorescent post-labeling agent, l-homocysteine thiolactone (L-HTL) as the substrate, and HPLC to achieve rapid and selective separation of the substrate and product. The method was applied to measure the activity of HTLase in human, rabbit, rat and mouse serum samples. In addition, the correlation between the serum HTLase activity and PON1 polymorphisms in Japanese subjects was also investigated. The serum HTLase activity in humans, as determined by measurement of the enzyme activity in 22 subjects, was found to be in the range of 0.89-2.06 nmol/min mg protein, with a mean activity of 1.44 nmol/min mg protein.  相似文献   
110.
Cell motility is highly dependent on the organization and function of microdomains composed of integrin, proteolipid/tetraspanin CD9, and ganglioside (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421; Kawakami, Y., Kawakami, K., Steelant, W. F. A., Ono, M., Baek, R. C., Handa, K., Withers, D. A., and Hakomori, S. (2002) J. Biol. Chem. 277, 34349-34358), later termed "glycosynapse 3" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92, 2002). Human bladder cancer cell lines KK47 (noninvasive and nonmetastatic) and YTS1 (highly invasive and metastatic), both derived from transitional bladder epithelia, are very similar in terms of integrin composition and levels of tetraspanin CD9. Tetraspanin CD82 is absent in both. The major difference is in the level of ganglioside GM3, which is several times higher in KK47 than in YTS1. We now report that the GM3 level reflects glycosynapse function as follows: (i) a stronger interaction of integrin alpha3 with CD9 in KK47 than in YTS1; (ii) conversion of benign, low motility KK47 to invasive, high motility cells by depletion of GM3 by P4 (D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol) treatment or by knockdown of CD9 by the RNA interference method; (iii) reversion of high motility YTS1 to low motility phenotype like that of KK47 by exogenous GM3 addition, whereby the alpha3-to-CD9 interaction was enhanced; (iv) low GM3 level activated c-Src in YTS1 or in P4-treated KK47, and high GM3 level by exogenous addition caused Csk translocation into glycosynapse, with subsequent inhibition of c-Src activation; (v) inhibition of c-Src by "PP2" in YTS1 greatly reduced cell motility. Thus, GM3 in glycosynapse 3 plays a dual role in defining glycosynapse 3 function. One is by modulating the interaction of alpha3 with CD9; the other is by activating or inhibiting the c-Src activity, possibly through Csk translocation. High GM3 level decreases tumor cell motility/invasiveness, whereas low GM3 level enhances tumor cell motility/invasiveness. Oncogenic transformation and its reversion can be explained through the difference in glycosynapse organization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号