首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1425篇
  免费   73篇
  2023年   2篇
  2022年   14篇
  2021年   42篇
  2020年   16篇
  2019年   27篇
  2018年   38篇
  2017年   39篇
  2016年   47篇
  2015年   66篇
  2014年   72篇
  2013年   95篇
  2012年   96篇
  2011年   110篇
  2010年   59篇
  2009年   65篇
  2008年   97篇
  2007年   99篇
  2006年   85篇
  2005年   59篇
  2004年   54篇
  2003年   70篇
  2002年   57篇
  2001年   16篇
  2000年   15篇
  1999年   18篇
  1998年   12篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1994年   10篇
  1993年   10篇
  1992年   10篇
  1991年   11篇
  1990年   13篇
  1989年   5篇
  1988年   8篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1498条查询结果,搜索用时 78 毫秒
101.
102.
AimPoly(ADP-ribose) polymerase-1 (PARP-1) is a DNA repair enzyme, and its excessive activation, following ischemia, trauma, etc., depletes cellular nicotinamide adenine dinucleotide (NAD+) as a substrate and eventually leads to brain cell death. Nicotinamide, an NAD+ precursor and a PARP-1 inhibitor, is known to prevent PARP-1-triggered cell death, but there is no available information on the mechanisms involved in its transport. Here we clarified the transport characteristics of nicotinamide in primary cultured mouse astrocytes.Main methodsUptake characteristics of [14C]nicotinamide were assessed by a conventional method with primary cultured mouse astrocytes. Cell viability and PARP-1 activity were determined with intracellular LDH activity and immunocytochemical detection of PAR accumulation, respectively.Key findingsPARP-1 activation was induced by treatment of astrocytes with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), an alkylating agent. MNNG-triggered astrocyte death and PAR accumulation were completely inhibited by treatment with nicotinamide as with DPQ (3,4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2H)-isoquinolinone), a second generation PARP inhibitor. The uptake of [14C]nicotinamide was time-, temperature-, concentration- and pH-dependent, and was inhibited and stimulated by co- and pre-treatment with N-methylnicotinamide, a representative substrate of an organic cation transport system, respectively. Co-treatment of astrocytes with nicotinamide and N-methylnicotinamide resulted in a decrease in PAR accumulation and absolute prevention of cell death.SignificanceThese findings suggest that nicotinamide has a protective effect against PARP-1-induced astrocyte death and that its transporter-mediated uptake, which is extracellular pH-sensitive and common to N-methylnicotinamide, is critical for prevention of PARP-1-triggered cell death.  相似文献   
103.
We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)‐1‐(pyridin‐2‐yl‐diazenyl)naphthalen‐2‐ol (PAN) complex. This probe emits near‐infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (λex = 530 nm, λem = 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
104.
Takashima Y  Era T  Nakao K  Kondo S  Kasuga M  Smith AG  Nishikawa S 《Cell》2007,129(7):1377-1388
Mesenchymal stem cells (MSCs) are defined as cells that undergo sustained in vitro growth and are able to give rise to multiple mesenchymal lineages. Although MSCs are already used in regenerative medicine little is known about their in vivo behavior and developmental derivation. Here, we show that the earliest wave of MSC in the embryonic trunk is generated from Sox1+ neuroepithelium but not from mesoderm. Using lineage marking by direct gfp knock-in and Cre-recombinase mediated lineage tracing, we provide evidence that Sox1+ neuroepithelium gives rise to MSCs in part through a neural crest intermediate stage. This pathway can be distinguished from the pathway through which Sox1+ cells give rise to oligodendrocytes by expression of PDGFRbeta and A2B5. MSC recruitment from this pathway, however, is transient and is replaced by MSCs from unknown sources. We conclude that MSC can be defined as a definite in vivo entity recruited from multiple developmental origins.  相似文献   
105.
106.
Human β-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of α- and β-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using α-1,6-mannosyltransferase-deficient (och1Δ) yeast as the host. Genes encoding the α- and β-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (αα) and HexB (ββ). A total of 57 mg of β-hexosaminidase isozymes, of which 13 mg was HexA (αβ), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the β-subunit. The purified HexA was treated with α-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 ± 0.1 and 1.7 ± 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the β-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.  相似文献   
107.
108.
Chalcone synthase (CHS), a key enzyme in flavonoid biosynthesis, catalyses sequential decarboxylative condensations of p-coumaroyl-CoA with three malonyl-CoA molecules and cyclizes the resulting tetraketide intermediate to produce chalcone. Phenylglyoxal, an Arg selective reagent, was found to inactivate the enzyme, although no Arg is found at the active site. Conserved, non-active site Arg residues of CHS were individually mutated and the results were discussed in the context of the 3D structure of CHS. Arg199 and Arg350 were shown to provide important interactions to maintain the structural integrity and foldability of the enzyme. Arg68, Arg172 and Arg328 interact with highly conserved Gln33/Phe215, Glu380 and Asp311/Glu314, respectively, thus helping position the catalytic Cys-His-Asn triad and the (372)GFGPG loop in correct topology at the active site. In particular, a mutation of Arg172 resulted in selective impairment in the cyclization activities of CHS and stilbene synthase, a related enzyme that catalyses a different cyclization of the same tetraketide intermediate. These Arg residues and their interactions are well conserved in other enzymes of the CHS superfamily, suggesting that they may serve similar functions in other enzymes. Mutations of Arg68 and Arg328 had been found in mutant plants that showed impaired CHS activity.  相似文献   
109.
Berberine chloride (1) and the structurally related compounds were assessed for the anti-human cytomegalovirus (HCMV) activity using the plaque assay. The anti-HCMV activity (IC(50) 0.68 microM) of 1 was equivalent to that (IC(50) 0.91 microM) of ganciclovir (GCV). The mechanism of action by which 1 inhibits the replication of HCMV is presumed to be different from that of GCV; 1 would interfere with intracellular events after virus penetration into the host cells and before viral DNA synthesis.  相似文献   
110.
Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP florescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号