首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1647篇
  免费   78篇
  1725篇
  2023年   2篇
  2022年   14篇
  2021年   43篇
  2020年   15篇
  2019年   27篇
  2018年   38篇
  2017年   41篇
  2016年   44篇
  2015年   69篇
  2014年   75篇
  2013年   105篇
  2012年   110篇
  2011年   105篇
  2010年   60篇
  2009年   79篇
  2008年   107篇
  2007年   102篇
  2006年   81篇
  2005年   67篇
  2004年   68篇
  2003年   77篇
  2002年   72篇
  2001年   22篇
  2000年   33篇
  1999年   22篇
  1998年   21篇
  1997年   10篇
  1996年   17篇
  1995年   9篇
  1994年   17篇
  1993年   9篇
  1992年   15篇
  1991年   17篇
  1990年   14篇
  1989年   18篇
  1988年   13篇
  1987年   11篇
  1986年   12篇
  1985年   4篇
  1984年   11篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   2篇
排序方式: 共有1725条查询结果,搜索用时 15 毫秒
21.
Cell cycle specificity of tumor necrosis factor and its receptor   总被引:1,自引:0,他引:1  
Phase specificity in the TNF cytotoxic effect and the number of TNF binding receptors was investigated using L-M cells incubated synchronously from the S phase. TNF cytotoxicity was observed to occur at various levels during the cell cycle, with peak effect in the G2-M phase. Analysis with 125I-labeled TNF to determine the number of receptors binding TNF in the various cell phases shewed a phase specificity with the maximum number occurring in the G2-M phase, similar to the peak in cytotoxicity. The results suggest the existence of a cell cycle specificity in the cytotoxicity of TNF which is apparently related to changes in the number of receptors capable of binding TNF.  相似文献   
22.
A suppressor tRNA(Tyr) and mutant tyrosyl-tRNA synthetase (TyrRS) pair was developed to incorporate 3-iodo-L-tyrosine into proteins in mammalian cells. First, the Escherichia coli suppressor tRNA(Tyr) gene was mutated, at three positions in the D arm, to generate the internal promoter for expression. However, this tRNA, together with the cognate TyrRS, failed to exhibit suppressor activity in mammalian cells. Then, we found that amber suppression can occur with the heterologous pair of E.coli TyrRS and Bacillus stearothermophilus suppressor tRNA(Tyr), which naturally contains the promoter sequence. Furthermore, the efficiency of this suppression was significantly improved when the suppressor tRNA was expressed from a gene cluster, in which the tRNA gene was tandemly repeated nine times in the same direction. For incorporation of 3-iodo-L-tyrosine, its specific E.coli TyrRS variant, TyrRS(V37C195), which we recently created, was expressed in mammalian cells, together with the B.stearothermophilus suppressor tRNA(Tyr), while 3-iodo-L-tyrosine was supplied in the growth medium. 3-Iodo-L-tyrosine was thus incorporated into the proteins at amber positions, with an occupancy of >95%. Finally, we demonstrated conditional 3-iodo-L-tyrosine incorporation, regulated by inducible expression of the TyrRS(V37C195) gene from a tetracycline-regulated promoter.  相似文献   
23.
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that interacts with cell-surface receptors, including CD44. Although HA usually exists as a high molecular mass polymer, HA of a much lower molecular mass that shows a variety of biological activities can be detected under certain pathological conditions, particularly in tumors. We previously reported that low molecular weight HAs (LMW-HAs) of a certain size range induce the proteolytic cleavage of CD44 from the surface of tumor cells and promote tumor cell migration in a CD44-dependent manner. Here, we show that MIA PaCa-2, a human pancreatic carcinoma cell line, secreted hyaluronidases abundantly and generated readily detectable levels of LMW-HAs ranging from approximately 10- to 40-mers. This occurred in the absence of any exogenous stimulation. The tumor-derived HA oligosaccharides were able to enhance CD44 cleavage and tumor cell motility. Inhibition of the CD44-HA interaction resulted in the complete abrogation of these cellular events. These results are consistent with the concept that tumor cells generate HA oligosaccha-rides that bind to tumor cell CD44 through the expression of their own constitutive hyaluronidases. This enhances their own CD44 cleavage and cell motility, which would subsequently promote tumor progression. Such an autocrine/paracrine-like process may represent a novel activation mechanism that would facilitate and promote the malignant potential of tumor cells.  相似文献   
24.
25.
A foam fractionation apparatus was prepared to aid protein separation at the gas–liquid interface. Using lysozyme as a model protein, we investigated the alteration of enzymatic and optical activities through foaming. The lysozyme transferred to the gaseous nitrogen phase after 5 min of bubbling with no exogenous detergent. The bacteriolytic and optical activities of lysozyme from the foamate were nearly equivalent to those of the original lysozyme. This result indicated that lysozyme did not irreversibly denature during foam fractionation. We then performed protein separation using binary mixtures of lysozyme and α-amylase. When the two proteins were dissolved in bulk solution of pH 10.5, which is close to the isoelectric point (pI) of lysozyme (10.7), selective fractionation of lysozyme from the foam was observed. Indeed, this fractionation was identical to that from a single component solution of lysozyme. Similarly, selective fractionation of α-amylase was achieved in pH 3.0 buffer. Furthermore, circular dichroism (CD) and subsequent model fitting revealed that the protein had a reduced or nearly complete absence of α-helical content, whereas the amount of β-sheet structure and random coil was elevated in the buffer conditions that promoted protein adsorption. These results indicate that a pH-induced conformational transition might correlate with protein foaming.  相似文献   
26.
The presence of immunoreactive porcine brain natriuretic peptide in rat tissues was studied with a specific radioimmunoassay for porcine brain natriuretic peptide-26. The cross-reactivity of the antiserum used was less than 0.001% with rat atrial natriuretic peptide, rat brain natriuretic peptide-32 and rat brain natriuretic peptide-45. Immunoreactive porcine brain natriuretic peptide was detectable in various tissues of the rat, and high concentrations of immunoreactive porcine brain natriuretic peptide were found in the brain and cardiac atrium, with the highest level in the hypothalamus (159±30 fmol/gram wet tissue, mean±SEM, n=4). Reverse phase high performance liquid chromatography showed that the immunoreactive porcine brain natriuretic peptide of the whole brain and heart extracts eluted mainly at an identical position to synthetic porcine brain natriuretic peptide-26. These findings indicate that porcine brain natriuretic peptide-like substance, distinct from rat brain natriuretic peptide, is present in high concentrations in the rat brain and cardiac atrium.  相似文献   
27.
28.
29.
Methionine (Met) is an essential amino acid for all organisms. In plants, Met also functions as a precursor of plant hormones, polyamines, and defense metabolites. The regulatory mechanism of Met biosynthesis is highly complex and, despite its great importance, remains unclear. To investigate how accumulation of Met influences metabolism as a whole in Arabidopsis, three methionine over-accumulation (mto) mutants were examined using a gas chromatography–mass spectrometry-based metabolomics approach. Multivariate statistical analyses of the three mto mutants (mto1, mto2, and mto3) revealed distinct metabolomic phenotypes. Orthogonal projection to latent structures–discriminant analysis highlighted discriminative metabolites contributing to the separation of each mutant and the corresponding control samples. Though Met accumulation in mto1 had no dramatic effect on other metabolic pathways except for the aspartate family, metabolite profiles of mto2 and mto3 indicated that several extensive pathways were affected in addition to over-accumulation of Met. The pronounced changes in metabolic pathways in both mto2 and mto3 were associated with polyamines. The findings suggest that our metabolomics approach not only can reveal the impact of Met over-accumulation on metabolism, but also may provide clues to identify crucial pathways for regulation of metabolism in plants.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号