首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1833篇
  免费   103篇
  1936篇
  2023年   2篇
  2022年   17篇
  2021年   44篇
  2020年   16篇
  2019年   34篇
  2018年   42篇
  2017年   44篇
  2016年   52篇
  2015年   75篇
  2014年   95篇
  2013年   132篇
  2012年   120篇
  2011年   130篇
  2010年   71篇
  2009年   83篇
  2008年   112篇
  2007年   124篇
  2006年   96篇
  2005年   81篇
  2004年   84篇
  2003年   75篇
  2002年   76篇
  2001年   25篇
  2000年   26篇
  1999年   29篇
  1998年   24篇
  1997年   13篇
  1996年   16篇
  1995年   11篇
  1994年   11篇
  1993年   20篇
  1992年   21篇
  1991年   19篇
  1990年   11篇
  1989年   17篇
  1988年   10篇
  1987年   11篇
  1986年   7篇
  1985年   6篇
  1984年   9篇
  1983年   9篇
  1982年   4篇
  1981年   2篇
  1979年   2篇
  1976年   2篇
  1975年   6篇
  1974年   2篇
  1973年   5篇
  1966年   2篇
  1963年   2篇
排序方式: 共有1936条查询结果,搜索用时 15 毫秒
101.
It has been reported that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase suppress cell proliferation and induce apoptosis. One inhibitor which induces apoptosis is mevastatin. However, the molecular mechanism of apoptosis induction is not well understood so the effects of mevastatin on various functions of HL-60 cells were investigated. We confirmed that mevastatin activated caspase-3 by release of cytochrome c (Cyt. c) from mitochondria through a membrane permeability transition mechanism and also induced typical fragmentation and ladder formation of DNA in HL-60 cells. These effects were inhibited by mevalonate, a metabolic intermediate of cholesterol biosynthesis. Mevalonate and geranylgeraniol (GGOH) inhibited DNA fragmentation whereas farnesol (FOH) did not. Mevastatin also induced cell differentiation to monocytic cells via a mevalonate inhibitable mechanism. Furthermore, mevastatin decreased the amount of an isoprenylated membrane bound Rap1 small GTPase concomitant with an increase in cytosolic Rap1 which occurred before apoptosis and differentiation. On the contrary, both mevastatin and geranylgeranylacetone (GGA), which competes with geranylgeranyl pyrophosphate, induced membrane depolarization of isolated mitochondria without swelling and Cyt. c release. These results suggest that mevastatin-induced apoptosis of HL-60 cells might be caused indirectly by activation of the caspase cascade through the modulation of mitochondrial functions and that some relationship between a certain small GTPase molecule, such as Rap1, and mevastatin-induced apoptosis may exist.  相似文献   
102.
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state.  相似文献   
103.
Li RA  Sato K  Kodama K  Kohno T  Xue T  Tomaselli GF  Marbán E 《FEBS letters》2002,511(1-3):159-164
mu-Conotoxin (mu-CTX) inhibits Na+ flux by obstructing the Na+ channel pore. Previous studies of mu-CTX have focused only on charged toxin residues, ignoring the neutral sites. Here we investigated the proximity between the C-terminal neutral alanine (A22) of mu-CTX and the Na+ channel pore by replacing it with the negatively charged glutamate. The analog A22E and wild-type (WT) mu-CTX exhibited identical nuclear magnetic resonance spectra except at the site of replacement, verifying that they have identical backbone structures. A22E significantly reduced mu-CTX affinity for WT mu1 Na+ channels (90-fold), as if the inserted glutamate repels the anionic pore receptor. We then looked for the interacting partner(s) of residue 22 by determining the potency of block of Y401K, Y401A, E758Q, D762K, D762A, E765K, E765A and D1241K channels by WT mu-CTX and A22E, followed by mutant cycle analysis to assess their individual couplings. Our results show that A22E interacts strongly with E765K from domain II (DII) (deltadeltaG=2.2 +/- 0.1 vs. <1 kcal/mol for others). We conclude that mu-CTX residue 22 closely associates with the DII pore in the toxin-bound channel complex. The approach taken may be further exploited to study the proximity of other neutral toxin residues with the Na+ channel pore.  相似文献   
104.
Thymine glycol, a potentially lethal DNA lesion produced by reactive oxygen species, can be removed by DNA glycosylase, Escherichia coli Nth (endonuclease III), or its mammalian homologue NTH1. We have found previously that mice deleted in the Nth homologue still retain at least two residual glycosylase activities for thymine glycol. We report herein that in cell extracts from the mNth1 knock-out mouse there is a third thymine glycol glycosylase activity that is encoded by one of three mammalian proteins with sequence similarity to E. coli Fpg (MutM) and Nei (endonuclease VIII). Tissue expression of this mouse Nei-like (designated as Neil1) gene is ubiquitous but much lower than that of mNth1 except in heart, spleen, and skeletal muscle. Recombinant NEIL1 can remove thymine glycol and 5-hydroxyuracil in double- and single-stranded DNA much more efficiently than 8-oxoguanine and can nick the strand by an associated (beta-delta) apurinic/apyrimidinic lyase activity. In addition, the mouse NEIL1 has a unique DNA glycosylase/lyase activity toward mismatched uracil and thymine, especially in U:C and T:C mismatches. These results suggest that NEIL1 is a back-up glycosylase for NTH1 with unique substrate specificity and tissue-specific expression.  相似文献   
105.
Endonuclease III, encoded by nth in Escherichia coli, removes thymine glycols (Tg), a toxic oxidative DNA lesion. To determine the biological significance of this repair in mammals, we established a mouse model with mutated mNth1, a homolog of nth, by gene targeting. The homozygous mNth1 mutant mice showed no detectable phenotypical abnormality. Embryonic cells with or without wild-type mNth1 showed no difference in sensitivity to menadione or hydrogen peroxide. Tg produced in the mutant mouse liver DNA by X-ray irradiation disappeared with time, though more slowly than in the wild-type mouse. In extracts from mutant mouse liver, we found, instead of mNTH1 activity, at least two novel DNA glycosylase activities against Tg. One activity is significantly higher in the mutant than in wild-type mouse in mitochondria, while the other is another nuclear glycosylase for Tg. These results underscore the importance of base excision repair of Tg both in the nuclei and mitochondria in mammals.  相似文献   
106.
Functional analysis of water channels in barley roots   总被引:1,自引:0,他引:1  
  相似文献   
107.
To investigate the effects of lentinan from Lentinas edodes and polysaccharides from Agaricus blazei (ABPS) on the expression of cytochrome P450s (CYPs), lentinan (10 mg/kg/day) or ABPS (200 mg/kg/day) was administered to female BALB/c mice four times every other day by intraperitoneal injection. Lentinan and ABPS suppressed both the constitutive and 3-methylcholanthrene-induced CYP1A expression and ethoxyresorufin-O-deethylation activity in the liver.  相似文献   
108.
Leukocyte common antigen-related molecule (LAR) is a receptor-like protein tyrosine phosphatase (PTPase) with two PTPase domains. In the present study, we detected the expression of LAR in the brain, kidney, and thymus of mice using anti-LAR PTPase domain subunit monoclonal antibody (mAb) YU1. In the thymus, LAR was expressed on CD4(-)CD8(-) and CD4(-)CD8(low) thymocytes. The development of thymocytes in CD45 knockout mice is blocked partially in the maturation of CD4(-)CD8(-) to CD4(+)CD8(+). We postulated that LAR regulates Lck and Fyn in the immature thymocytes. Transfection of wild-type LAR activated extracellular signal-regulated kinase signal transduction pathway in CD45-deficient Jurkat cells stimulated with anti-CD3 mAb. LAR mutants, with Cys to Ser mutation in the catalytic center of PTPase D1, bound to tyrosine-phosphorylated Lck and Fyn, and LAR PTPase domain 2 was tyrosine phosphorylated by Fyn tyrosine kinase. The phosphorylated LAR was associated with Fyn Src homology 2 domain. Moreover, LAR dephosphorylated phosphorylated tyrosine residues in both the COOH terminus and kinase domain of Fyn in vitro. Our results indicate that Lck and Fyn would be substrates of LAR in immature thymocytes and that each LAR PTPase domain plays distinct functional roles in phosphorylation and dephosphorylation.  相似文献   
109.
Surgical stress is difficult to evaluate quantitatively. It has been reported that mitochondrial membrane potential (delta psi(m)) in the peripheral blood lymphocytes (PBLs) is decreased by surgical stress. Thioredoxin (TRX), a small protein with redox-active dithiol/disulfide in the active site, is induced by a variety of oxidative stresses and secreted from the cells. Accumulating evidence shows that plasma levels of TRX are elevated in oxidative stress-associated disorders. In the present study, we examined plasma levels of TRX in cases undergoing operations for gastrointestinal cancer. Plasma levels of TRX were significantly elevated on the first postoperative day compared with the pre-operative levels. The changes in the plasma TRX levels tended to show an inverse relationship with the changes in delta psi(m) in PBLs, which shows a significant decrease caused by surgical stress. Plasma TRX levels as well as delta psi(m) in PBLs are valuable markers to evaluate surgical stress.  相似文献   
110.
Two flavonoid glucosyltransferases, UDP-glucose:flavonoid 3-O-glucosyltransferase (3-GT) and UDP-glucose: anthocyanin 5-O-glucosyltransferase (5-GT), are responsible for the glucosylation of anthocyani(di)ns to produce stable molecules in the anthocyanin biosynthetic pathway. The cDNAs encoding 3-GT and 5-GT were isolated from Petunia hybrida by hybridization screening with heterologous probes. The cDNA clones of 3-GT, PGT8, and 5-GT, PH1, encode putative polypeptides of 448 and 468 amino acids, respectively. A phylogenetic tree based on amino acid sequences of the family of glycosyltransferases from various plants shows that PGT8 belongs to the 3-GT subfamily and PH1 belongs to the 5-GT subfamily. The function of isolated cDNAs was identified by the catalytic activities for 3-GT and 5-GT exhibited by the recombinant proteins produced in yeast. The recombinant PGT8 protein could convert not only anthocyanidins but also flavonols into the corresponding 3-O-glucosides. In contrast, the recombinant PH1 protein exhibited a strict substrate specificity towards anthocyanidin 3-acylrutinoside, comparing with other 5-GTs from Perilla frutescens and Verbena hybrida, which showed broad substrate specificities towards several anthocyanidin 3-glucosides. The mRNA expression of both 3-GT and 5-GT increased in the early developmental stages of P. hybrida flower, reaching the maximum at the stage before flower opening. Southern blotting analysis of genomic DNA indicates that both 3-GT and 5-GT genes exist in two copies in P. hybrida, respectively. The results are discussed in relation to the molecular evolution of flavonoid glycosyltransferases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号