首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   64篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   10篇
  2016年   17篇
  2015年   15篇
  2014年   29篇
  2013年   48篇
  2012年   48篇
  2011年   64篇
  2010年   37篇
  2009年   33篇
  2008年   41篇
  2007年   64篇
  2006年   70篇
  2005年   62篇
  2004年   57篇
  2003年   59篇
  2002年   38篇
  2001年   13篇
  2000年   12篇
  1999年   17篇
  1998年   14篇
  1997年   9篇
  1996年   12篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   20篇
  1991年   21篇
  1990年   13篇
  1989年   12篇
  1988年   8篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1971年   1篇
  1970年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有935条查询结果,搜索用时 15 毫秒
31.
The aim of this study was to assess the adhesion of Bifidobacterium strains to acidic carbohydrate moieties of porcine colonic mucin. Mucins were extracted and purified via gel filtration chromatography followed by density-gradient ultracentrifugation. The presence of sulfated and sialylated carbohydrates in mucins was shown by enzyme-linked immunosorbent assays using PGM34 and HMC31 monoclonal antibodies (mAbs), respectively. Adhesion of Bifidobacterium strains to mucin preparations was markedly affected by the degree of purification. In eight of 22 strains, we observed increased adhesion to mucin preparations purified by ultracentrifugation. Moreover, in some of these eight strains, adhesion to mucin was reduced by pretreatment with sulfatase and/or sialidase, and competitively inhibited by pretreatment with PGM34 and/or HCM31 mAbs. Our results showed that some Bifidobacterium strains adhered to sulfo- and/or sialomucin and were able to recognize carbohydrate structures of the mAbs epitopes.  相似文献   
32.

Background

Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults.

Methods

We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability).

Results and Discussion

Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults.

Conclusions

Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields.

Trial Registration

UMIN Clinical Trial Registry 000005618.  相似文献   
33.
Serum sphingomyelin (SM) has predictive value in the development of atherosclerosis. Furthermore, SM plays important roles in cell membrane structure, signal transduction pathways, and lipid raft formation. A convenient enzymatic method for SM is available for routine laboratory practice, but the enzyme specificity is not sufficient because of nonspecific reactions with lysophosphatidylcholine (LPC). Based on the differential specificity of selected enzymes toward choline-containing phospholipids, a two-step assay for measuring SM was constructed and its performance was evaluated using sera from healthy individuals on a Hitachi 7170 autoanalyzer. Results from this assay were highly correlated with theoretical serum SM concentrations estimated by subtracting phosphatidylcholine (PC) and LPC concentrations from that of total phospholipids determined using previously established methods. There was a good correlation between the results of SM assayed by the proposed method and the existing enzymatic method in sera from healthy individuals. Moreover, the proposed method was superior to the existing method in preventing nonspecific reactions with LPC present in sera. The proposed method does not require any pretreatment, uses 2.5 μl of serum samples, and requires only 10 min on an autoanalyzer. This high-throughput method can measure serum SM with sufficient specificity for clinical purposes and is applicable in routine laboratory practice.  相似文献   
34.
35.
For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco‐engineered line (NbGNTI‐RNAi) showed a strong reduction of plant‐specific N‐glycans, with the result that as much as 90.9% of the total N‐glycans were of high‐mannose type. Therefore, this NbGNTI‐RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI‐RNAi plant was cross‐pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N‐glycan structures that were presented on all of the four occupied N‐glycosylation sites of recombinant GC in NbGNTI‐RNAi plants (GCgnt1) showed that the majority (ranging from 73.3% up to 85.5%) of the N‐glycans had mannose‐type structures lacking potential immunogenic β1,2‐xylose and α1,3‐fucose epitopes. Moreover, GCgnt1 could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI‐RNAi line, producing GC, was stable and the NbGNTI‐RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N‐glycan structures.  相似文献   
36.
Reversible infantile liver failure (RILF) is a unique heritable liver disease characterized by acute liver failure followed by spontaneous recovery at an early stage of life. Genetic mutations in MTU1 have been identified in RILF patients. MTU1 is a mitochondrial enzyme that catalyzes the 2-thiolation of 5-taurinomethyl-2-thiouridine (τm5s2U) found in the anticodon of a subset of mitochondrial tRNAs (mt-tRNAs). Although the genetic basis of RILF is clear, the molecular mechanism that drives the pathogenesis remains elusive. We here generated liver-specific knockout of Mtu1 (Mtu1LKO) mice, which exhibited symptoms of liver injury characterized by hepatic inflammation and elevated levels of plasma lactate and AST. Mechanistically, Mtu1 deficiency resulted in a loss of 2-thiolation in mt-tRNAs, which led to a marked impairment of mitochondrial translation. Consequently, Mtu1LKO mice exhibited severe disruption of mitochondrial membrane integrity and a broad decrease in respiratory complex activities in the hepatocytes. Interestingly, mitochondrial dysfunction induced signaling pathways related to mitochondrial proliferation and the suppression of oxidative stress. The present study demonstrates that Mtu1-dependent 2-thiolation of mt-tRNA is indispensable for mitochondrial translation and that Mtu1 deficiency is a primary cause of RILF. In addition, Mtu1 deficiency is associated with multiple cytoprotective pathways that might prevent catastrophic liver failure and assist in the recovery from liver injury.  相似文献   
37.
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.  相似文献   
38.
Although cullin-1 neddylation is crucial for the activation of SCF ubiquitin E3 ligases, the underlying mechanisms for NEDD8-mediated activation of SCF remain unclear. Here we demonstrate by NMR and mutational studies that NEDD8 binds the ubiquitin E2 (UBC4), but not NEDD8 E2 (UBC12). Our data imply that NEDD8 forms an active platform on the SCF complex for selective recruitment of ubiquitin-charged E2s in collaboration with RBX1, and thereby upregulates the E3 activity.  相似文献   
39.
40.
Brevibacillus choshinensis (Bacillus brevis) HPD31 is a very efficient producer of recombinant human epidermal growth factor (EGF). The produced EGF is secreted into the medium with high efficiency. However part of the EGF that accumulates in the medium, exists as multimeric forms which are biologically inactive. We found the bacterium has the activity to structurally convert multimeric forms to the monomeric, native ones. Optimal temperature and pH for the conversion were 40 degrees C and pH 9, respectively. The reaction was promoted in the presence of reduced glutathione or cysteine. But the cells which had been sonicated or exposed to moderate heat treatment completely lost the activity. Thus, it was presumed that the activity might be due to the enzyme(s) that catalyze the protein disulfide exchanging reaction, and that they resides on the surface of viable cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号