首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1305篇
  免费   86篇
  1391篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   8篇
  2018年   16篇
  2017年   19篇
  2016年   27篇
  2015年   31篇
  2014年   38篇
  2013年   59篇
  2012年   74篇
  2011年   79篇
  2010年   44篇
  2009年   48篇
  2008年   77篇
  2007年   88篇
  2006年   57篇
  2005年   90篇
  2004年   73篇
  2003年   77篇
  2002年   58篇
  2001年   32篇
  2000年   26篇
  1999年   31篇
  1998年   18篇
  1997年   14篇
  1996年   16篇
  1995年   11篇
  1994年   9篇
  1993年   12篇
  1992年   28篇
  1991年   23篇
  1990年   21篇
  1989年   31篇
  1988年   11篇
  1987年   9篇
  1986年   7篇
  1985年   14篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   7篇
  1980年   5篇
  1978年   5篇
  1974年   5篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
  1969年   6篇
  1968年   4篇
排序方式: 共有1391条查询结果,搜索用时 0 毫秒
31.
Serum sphingomyelin (SM) has predictive value in the development of atherosclerosis. Furthermore, SM plays important roles in cell membrane structure, signal transduction pathways, and lipid raft formation. A convenient enzymatic method for SM is available for routine laboratory practice, but the enzyme specificity is not sufficient because of nonspecific reactions with lysophosphatidylcholine (LPC). Based on the differential specificity of selected enzymes toward choline-containing phospholipids, a two-step assay for measuring SM was constructed and its performance was evaluated using sera from healthy individuals on a Hitachi 7170 autoanalyzer. Results from this assay were highly correlated with theoretical serum SM concentrations estimated by subtracting phosphatidylcholine (PC) and LPC concentrations from that of total phospholipids determined using previously established methods. There was a good correlation between the results of SM assayed by the proposed method and the existing enzymatic method in sera from healthy individuals. Moreover, the proposed method was superior to the existing method in preventing nonspecific reactions with LPC present in sera. The proposed method does not require any pretreatment, uses 2.5 μl of serum samples, and requires only 10 min on an autoanalyzer. This high-throughput method can measure serum SM with sufficient specificity for clinical purposes and is applicable in routine laboratory practice.  相似文献   
32.
33.
We investigated the effects of a short-term dietary zinc deficiency on bone metabolism. Zinc deficiency increased the mRNA expression of zinc uptake transporters such as Zip1, Zip13, and Zip14 in bone. However, zinc deficiency might not maintain zinc storage in bone, resulting in a decrease in bone formation through downregulation of the expression levels of osteoblastogenesis-related genes.  相似文献   
34.
35.
The trafficking of aquaporin-2 (AQP2) involves multiple complex pathways, including regulated, cAMP-, and cGMP-mediated pathways, as well as a constitutive recycling pathway. Although several accessory proteins have been indirectly implicated in AQP2 recycling, the direct protein-protein interactions that regulate this process remain largely unknown. Using yeast two-hybrid screening of a human kidney cDNA library, we have identified the 70-kDa heat shock proteins as AQP2-interacting proteins. Interaction was confirmed by mass spectrometry of proteins pulled down from rat kidney papilla extract using a GST-AQP2 C-terminal fusion protein (GST-A2C) as a bait, by co-immunoprecipitation (IP) assays, and by direct binding assays using purified hsc70 and the GST-A2C. The direct interaction of AQP2 with hsc70 is partially inhibited by ATP, and the Ser-256 residue in the AQP2 C terminus is important for this direct interaction. Vasopressin stimulation in cells enhances the interaction of hsc70 with AQP2 in IP assays, and vasopressin stimulation in vivo induces an increased co-localization of hsc70 and AQP2 on the apical membrane of principal cells in rat kidney collecting ducts. Functional knockdown of hsc70 activity in AQP2 expressing cells results in membrane accumulation of AQP2 and reduced endocytosis of rhodamine-transferrin. Our data also show that AQP2 interacts with hsp70 in multiple in vitro binding assays. Finally, in addition to hsc70 and hsp70, AQP2 interacts with several other key components of the endocytotic machinery in co-IP assays, including clathrin, dynamin, and AP2. To summarize, we have identified the 70-kDa heat shock proteins as a AQP2 interactors and have shown for hsc70 that this interaction is involved in AQP2 trafficking.  相似文献   
36.
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.  相似文献   
37.
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.  相似文献   
38.
In many lineages of algae and land plants, photosynthesis was lost multiple times independently. Comparative analyses of photosynthetic and secondary nonphotosynthetic relatives have revealed the essential functions of plastids, beyond photosynthesis. However, evolutionary triggers and processes that drive the loss of photosynthesis remain unknown. Cryptophytes are microalgae with complex plastids derived from a red alga. They include several secondary nonphotosynthetic species with closely related photosynthetic taxa. In this study, we found that a cryptophyte, Cryptomonas borealis, is in a stage just prior to the loss of photosynthesis. Cryptomonas borealis was mixotrophic, possessed photosynthetic activity, and grew independent of light. The plastid genome of C. borealis had distinct features, including increases of group II introns with mobility, frequent genome rearrangements, incomplete loss of inverted repeats, and abundant small/medium/large-sized structural variants. These features provide insight into the evolutionary process leading to the loss of photosynthesis.  相似文献   
39.
Protein kinase B (PKB) was recently reported to be activated on the phosphorylation of Thr(308) by Ca(2+)/calmodulin-dependent protein kinase kinase alpha (CaM-kinase kinase alpha), suggesting that PKB was regulated through not only the phosphoinositide 3-kinase pathway but also the Ca(2+)/calmodulin protein kinase pathway. The activation of PKB by CaM-kinase kinase alpha was as high as 300-fold after incubation for 30 min under the phosphorylation conditions, and still increased thereafter, suggesting that the maximal activation of PKB on phosphorylation of the Thr(308) residue is several hundred fold. On the other hand, the V(max) value of CaM-kinase kinase alpha for the phosphorylation of PKB was more than two orders of magnitude lower than that for CaM-kinase IV, although the K(m) values for PKB and CaM-kinase IV were not significantly different, raising the question of whether or not PKB is a physiological substrate of CaM-kinase kinase alpha. Besides CaM-kinase kinase alpha, CaM-kinase II also remarkably activated PKB. However, the specific activities of CaM-kinase kinase alpha and CaM-kinase II as to the activation of PKB were more than three orders of magnitude lower than that of 3-phosphoinositide-dependent protein kinase 1 (PDK1).  相似文献   
40.
The milk fat globule membrane (MFGM) enclosing fat droplets in bovine milk was isolated, and its effects on hydrolysis of milk fat by lipases were investigated by using a gum arabic-stabilized milk fat emulsion as substrate. The addition of isolated MFGM to the reaction mixture markedly inhibited hydrolysis by pancreatic and microbial (Rhizopus delemer) lipases. The inhibition was completely lost on tryptic digestion of MFGM, suggesting that the protein moiety of MFGM played a role in the inhibition. Soluble glycoprotein (SGP) which was isolated from delipidated MFGM produced marked inhibitory activity. The inhibition by SGP was dependent on substrate concentration, suggesting that the inhibition was at least partly due to coverage and blockage of the substrate surface by SGP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号