首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1305篇
  免费   86篇
  1391篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   8篇
  2018年   16篇
  2017年   19篇
  2016年   27篇
  2015年   31篇
  2014年   38篇
  2013年   59篇
  2012年   74篇
  2011年   79篇
  2010年   44篇
  2009年   48篇
  2008年   77篇
  2007年   88篇
  2006年   57篇
  2005年   90篇
  2004年   73篇
  2003年   77篇
  2002年   58篇
  2001年   32篇
  2000年   26篇
  1999年   31篇
  1998年   18篇
  1997年   14篇
  1996年   16篇
  1995年   11篇
  1994年   9篇
  1993年   12篇
  1992年   28篇
  1991年   23篇
  1990年   21篇
  1989年   31篇
  1988年   11篇
  1987年   9篇
  1986年   7篇
  1985年   14篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   7篇
  1980年   5篇
  1978年   5篇
  1974年   5篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
  1969年   6篇
  1968年   4篇
排序方式: 共有1391条查询结果,搜索用时 15 毫秒
21.
Drosophila neuroblasts provide an excellent model for asymmetric cell divisions, where cell-fate determinants such as Miranda localize at the basal cortex and segregate to one daughter cell. Mechanisms underlying this process, however, remain elusive. We found that Mo25 and the GC kinase Fray act in this regulation. mo25 and fray mutants show an indistinguishable defect in Miranda localization. On the other hand, Drosophila Mo25 interacts with the tumor suppressor kinase Lkb1 in vivo, as have shown in mammals. Overexpression of Lkb1, which accumulates in the cell cortex, drastically relocalizes both Mo25 and Fray from the cytoplasm to the cortex, causing the same phenotype as mo25-mutant neuroblasts. Recovery from this defect caused by Lkb1 overexpression requires simultaneous overexpression of Mo25 and Fray. We suggest from those results that Mo25 and Fray operate together or in the same pathway in Drosophila asymmetric processes, and that their function counterbalances Lkb1.  相似文献   
22.
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a novel gene disrupted by a (1;11)(q42.1;q14.3) translocation segregating with schizophrenia, bipolar disorder and other major mental illnesses in a Scottish family. We previously identified 446-533 amino acids of DISC1 as the kendrin-binding region by means of a directed yeast two-hybrid interaction assay and showed that the DISC1-kendrin interaction is indispensable for the centrosomal localization of DISC1. In this study, to confirm the DISC1-kendrin interaction, we examined the interaction between deletion mutants of DISC1 and kendrin. Then, we demonstrated that the carboxy-terminus of DISC1 is indispensable for the interaction with kendrin. Furthermore, the immunocytochemistry revealed that the carboxy-terminus of DISC1 is also required for the centrosomal targeting of DISC1. Overexpression of the DISC1-binding region of kendrin or the DISC1 deletion mutant lacking the kendrin-binding region impairs the microtubule organization. These findings suggest that the DISC1-kendrin interaction plays a key role in the microtubule dynamics.  相似文献   
23.
In the previous reports, we showed that the familial Alzheimer's disease (AD)-linked presenilin-1 (PS1) mutation induced the fragility to the endoplasmic reticulum (ER) stress and that caspase-4 mediates ER stress-induced- and beta-amyloid induced-apoptotic signaling in human cells. These results suggest the involvement of ER stress and caspase-4 in the cell death observed in AD. In this report, we studied the activation of caspase-4 in the familial AD-linked PS1 mutation (DeltaE9). Cleavage of caspase-4 under ER stress was enhanced by the overexpression of the familial AD-linked mutation (DeltaE9), showing that caspase-4 is a key caspase involved in the apoptotic signaling of AD. We also showed that the overexpression of caspase-4 induced cleavage of caspase-9 and caspase-3 without releasing cytochrome-c from the mitochondria. Thus, caspase-4 activates downstream caspases independently of mitochondrial apoptotic signaling and this might contribute to the pathogenesis of AD. To sum up our data, the familial AD-linked PS1 mutation accelerates the cleavage of caspase-4 under the ER stress and results in the activation of caspase-9 and caspase-3, apoptosis signal, without releasing cytochrome-c.  相似文献   
24.
The validity of 5′-nucleotidase as a plasma membrane marker enzyme in beef thyroid has been tested by comparing the subcellular distribution of its activity to that of (Na+K+)-activated ATPase and adenyl cyclase. The specific activity and total activity of (Na+K+)-ATPase and adenyl cyclase were greatest in the 1000 × g (“nuclear”) and 33 000 × g (“mitochondrial and lysosomal”) fractions. In contrast, 5′-nucleotidase activity was concentrated in the 165 000 × g (“microsomal”) pellet and supernatant. Partially purified plasma membranes were separated from the 1000 (N2), 30 000 (M2) and 165 000 × g (P2) pellets by discontinuous sucrose gradient centrifugation. Again a discordant distribution of these enzyme activities was observed. (Na+K+)-ATPase specific activity was increased approximately 30-fold over the homogenate in Fractions N2 and M2. Basal, thyroid-stimulating hormone-and fluoride-stimulated adenyl cyclase activities were concentrated in the same fractions. 5′-Nucleotidase activity was preferentially located in M2 and P2. These differences in distribution pattern suggest that 5′-nucleotidase activity is not uniquely located in the plasma membrane in the thyroid.  相似文献   
25.
Cancer stem-like cells (CSCs)/cancer-initiaiting cells (CICs) are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP) analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDHBr) cells from ovarian cancer cells. Both SP cells and ALDHBr cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2), than those of main population (MP) cells and ALDHLow cells, respectively. We analyzed an SP and ALDHBr overlapping population (SP/ALDHBr), and the SP/ALDHBr population exhibited higher tumor-initiating ability than that of SP cells or ALDHBr cells, enabling initiation of tumor with as few as 102 cells. Furthermore, SP/ADLHBr population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDHLow, MP/ALDHBr and MP/ALDHLow cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDHBr population was detected in several gynecological cancer cells with ratios of 0.1% for HEC—1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDHBr overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.  相似文献   
26.
27.
Energy-conversion systems mediated by bacterial metabolism have recently attracted much attention, and therefore, demands for tuning of bacterial metabolism are increasing. It is widely recognized that intracellular redox atmosphere which is generally tuned by dissolved oxygen concentration or by appropriate selection of an electron acceptor for respiration is one of the important factors determining the bacterial metabolism. In general, electrochemical approaches are valuable for regulation of redox-active objects. However, the intracellular redox conditions are extremely difficult to control electrochemically because of the presence of insulative phospholipid bilayer membranes. In the present work, the limitation can be overcome by use of the bacterial genus Shewanella , which consists of species that are able to respire via cytochromes abundantly expressed in their outer-membrane with solid-state electron acceptors, including anodes. The electrochemical characterization and the gene expression analysis revealed that the activity of tricarboxylic acid (TCA) cycle in Shewanella cells can be reversibly gated simply by changing the anode potential. Importantly, our present results for Shewanella cells cultured in an electrochemical system under poised potential conditions showed the opposite relationship between the current and electron acceptor energy level, and indicate that this unique behavior originates from deactivation of the TCA cycle in the (over-)oxidative region. Our result obtained in this study is the first demonstration of the electrochemical gating of TCA cycle of living cells. And we believe that our findings will contribute to a deeper understanding of redox-dependent regulation systems in living cells, in which the intracellular redox atmosphere is a critical factor determining the regulation of various metabolic and genetic processes.  相似文献   
28.
Biological Trace Element Research - The essential trace element zinc maintains liver functions. Liver diseases can alter overall zinc concentrations, and hypozincemia is associated with various...  相似文献   
29.

Background

CHK1 is an important effector kinase that regulates the cell cycle checkpoint. Previously, we showed that CHK1 is cleaved in a caspase (CASP)-dependent manner during DNA damage-induced programmed cell death (PCD) and have examined its physiological roles.

Methods and results

In this study, we investigated the behavior of CHK1 in PCD. Firstly, we found that CHK1 is cleaved at three sites in PCD, and all cleavages were inhibited by the co-treatment of a pan-CASP inhibitor or serine protease inhibitors. We also showed that CHK1 is cleaved by CASP3 and/or CASP7 recognizing at 296SNLD299 and 348TCPD351, and that the cleavage results in the enhancement of CHK1 kinase activity. Furthermore, as a result of the characterization of cleavage sites by site-directed mutagenesis and an analysis performed using deletion mutants, we identified 320EPRT323 as an additional cleavage recognition sequence. Considering the consensus sequence cleaved by CASP, it is likely that CHK1 is cleaved by non-CASP family protease(s) recognizing at 320EPRT323. Additionally, the cleavage catalyzed by the 320EPRT323 protease(s) markedly and specifically increased when U2OS cells synchronized into G1 phase were induced to PCD by cisplatin treatment.

Conclusion

CHK1 cleavage is directly and indirectly regulated by CASP and non-CASP family proteases including serine protease(s) and the “320EPRT323 protease(s).” Furthermore, 320EPRT323 cleavage of CHK1 occurs efficiently in PCD which is induced at the G1 phase by DNA damage.

General significance

CASP and non-CASP family proteases intricately regulate cleavage for up-regulation of CHK1 kinase activity during PCD.  相似文献   
30.
Among photomixotrophic green calluses tested (N. rustica. N. tobacum L. cv. BY-4 and Samsun), the callus of Samsun had the highest contents of chlorophyll and chloroplast lipids, such as monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG), sulfoquinovosyldigly-ceride (SQDG) and phosphatidylglycerol (PG). However, the chlorophyll and chloroplast lipids in the green callus of Samsun were still 1/6 and 1/3 of that in the parent leaves, respectively. The relative content of a-linolenate in MGDG, DGDG and SQDG of the green calluses were higher than that of the white calluses. The ratios of hexadecatrienoate in MGDG and hexadeceno-ate 3-trans) in PG in the green calluses were trace or less compared with that of the parent leaves. The crude lipids and total fatty acid contents of the chlorophyll deficient leaves (N. taba-cum L. cv. Consolation 402 and Dominant Aurea Su/su) were almost the same as those of the normal leaves (cv. BY-4 and Samsun), although the chlorophyll contents of the chlorophyll deficient leaves were 1/3 ~ 1/4 of that of the normal leaves. The ratios of chloroplast lipids in the total polar lipids in the chlorophyll deficient leaves were a little lower than that in the normal green leaves, but the former had a slightly higher ratio of phospholipids such as phosphatidylcholine and phosphatidylethanolamine than the latter. There were few differences in the fatty acid compositions of each individual lipid betweeen both types of leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号