首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   790篇
  免费   32篇
  2021年   6篇
  2020年   7篇
  2019年   5篇
  2018年   10篇
  2017年   6篇
  2016年   13篇
  2015年   29篇
  2014年   26篇
  2013年   26篇
  2012年   53篇
  2011年   41篇
  2010年   22篇
  2009年   26篇
  2008年   56篇
  2007年   55篇
  2006年   47篇
  2005年   52篇
  2004年   47篇
  2003年   52篇
  2002年   63篇
  2001年   17篇
  2000年   6篇
  1999年   9篇
  1998年   4篇
  1997年   12篇
  1996年   8篇
  1995年   8篇
  1994年   4篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1987年   2篇
  1985年   2篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   7篇
  1978年   2篇
  1977年   5篇
  1976年   8篇
  1975年   8篇
  1973年   7篇
  1972年   5篇
  1971年   7篇
  1970年   3篇
  1966年   2篇
排序方式: 共有822条查询结果,搜索用时 31 毫秒
31.
Fatty aldehyde dehydrogenase (FALDH, ALDH3A2) is thought to be involved in the degradation of phytanic acid, a saturated branched chain fatty acid derived from chlorophyll. However, the identity, subcellular distribution, and physiological roles of FALDH are unclear because several variants produced by alternative splicing are present in varying amounts at different subcellular locations. Subcellular fractionation experiments do not provide a clear-cut conclusion because of the incomplete separation of organelles. We established human cell lines heterologously expressing mouse FALDH from each cDNA without tagging under the control of an inducible promoter and detected the variant FALDH proteins using a mouse FALDH-specific antibody. One variant, FALDH-V, was exclusively detected in peroxisomal membranes. Human FALDH-V with an amino-terminal Myc sequence also localized to peroxisomes. The most dominant form, FALDH-N, and other variants examined, however, were distributed in the endoplasmic reticulum. A gas chromatography-mass spectrometry-based analysis of metabolites in FALDH-expressing cells incubated with phytol or phytanic acid showed that FALDH-V, not FALDH-N, is the key aldehyde dehydrogenase in the degradation pathway and that it protects peroxisomes from oxidative stress. In contrast, both FALDHs had a protective effect against oxidative stress induced by a model aldehyde for lipid peroxidation, dodecanal. These results suggest that FALDH variants are produced by alternative splicing and share an important role in protecting against oxidative stress in an organelle-specific manner.  相似文献   
32.
33.
Doublecortin (Dcx) is a microtubule-associated protein that is mutated in X-linked lissencephaly (X-LIS), a neuronal migration disorder associated with epilepsy and mental retardation. Although Dcx can bind ubiquitously to microtubules in nonneuronal cells, Dcx is highly enriched in the leading processes of migrating neurons and the growth cone region of differentiating neurons. We present evidence that Dcx/microtubule interactions are negatively controlled by Protein Kinase A (PKA) and the MARK/PAR-1 family of protein kinases. In addition to a consensus MARK site, we identified a serine within a novel sequence that is crucial for the PKA- and MARK-dependent regulation of Dcx's microtubule binding activity in vitro. This serine is mutated in two families affected by X-LIS. Immunostaining neurons with an antibody that recognizes phosphorylated substrates of MARK supports the conclusion that Dcx localization and function are regulated at the leading edge of migrating cells by a balance of kinase and phosphatase activity.  相似文献   
34.
35.
We compared the relaxant effect of original pituitary adenylate cyclase-activating peptide (PACAP)1-27 with that of a newly developed, synthetic PACAP1-27 analogue, [Arg15,20,21 Leu17]-PACAP-Gly-Lys-Arg-NH2, in human bronchi in vitro (n=4-5 in each group). Using precontraction by carbachol (0.1 microM), cumulative administration of PACAP1-27 and salbutamol caused concentration-dependent smooth muscle relaxation with similar potencies and maximum relaxant effects. Non-cumulative administration of the PACAP1-27 analogue and the original PACAP1-27 caused concentration-dependent relaxation with a similar maximum relaxant effect and potency as well. However, the onset and offset of action was markedly slower for the PACAP1-27 analogue than for the original PACAP1-27 (>90% versus <10% of peak relaxation remaining 5 h after administration). Peptidase inhibition by captopril (10 microM) and phosphoramidon (1 microM) significantly increased the maximum relaxant effect and duration of action of PACAP1-27 but not of the PACAP1-27 analogue, during the 3 h of observation in the human bronchi. We conclude that [Arg15,20,21 Leu17]-PACAP-Gly-Lys-Arg-NH2 produces significant concentration-dependent and sustained bronchial smooth muscle relaxation in vitro. The sustained relaxant effect is due, at least in part, to the synthetic PACAP1-27 analogue being less susceptible to cleavage by peptidases than the original peptide PACAP1-27.  相似文献   
36.
Nostocine A (1) is an extracellular cytotoxic violet pigment produced by the freshwater cyanobacterium, Nostoc spongiaeforme TISTR 8169. Treatment with 1 was found to accelerate the generation of reactive oxygen species (ROS) in the green alga, Chlamydomonas reinhardtii, in the light. In vitro analysis revealed that 1 specifically eliminated superoxide radical anion (O(2)(-)) among several ROS tested. During the course of the reaction, oxygen (O(2)) was simultaneously synthesized and the O(2) synthesizing rate increased with the amount of 1 added. In contrast, O(2)(-) generation occurred when NADPH or NADH was added to a solution of 1 under aerobic condition. The reduction potential of 1 is very similar to that of O(2) indicating that 1 and O(2) can easily exchange electrons depending on the mass balance between their oxidized and reduced forms. Based on these results, the following hypothesis is formulated for the mechanism of intracellular ROS generation by treatment with 1: 1 taken into the target cells is reduced specifically by intracellular reductants such as NAD(P)H. When the O(2) level is sufficiently higher than that of 1, the reduced product of 1 is immediately oxidized by O(2). This is accompanied by the synthesis of O(2)(-) from O(2). The generation of O(2)(-) successively occurs, undergoing repeated redox cycles of 1, when the levels of the reductant and O(2) are still dominant to promote these reactions. This similar intracellular ROS generation mechanism to that of paraquat may cause the cytotoxicity.  相似文献   
37.
Small GTPases of the ADP-ribosylation factor (ARF) family play a key role in membrane trafficking by regulating coated vesicle formation, and guanine nucleotide exchange is essential for the ARF function. Brefeldin A blocks the ARF-triggered coat assembly by inhibiting the guanine nucleotide exchange on ARFs and causes disintegration of the Golgi complex and tubulation of endosomal membranes. BIG2 is one of brefeldin A-inhibited guanine nucleotide exchange factors for the ARF GTPases and is associated mainly with the trans-Golgi network. In the present study, we have revealed that another population of BIG2 is associated with the recycling endosome and found that expression of a catalytically inactive BIG2 mutant, E738K, selectively induces membrane tubules from this compartment. We also have shown that BIG2 has an exchange activity toward class I ARFs (ARF1 and ARF3) in vivo and inactivation of either ARF exaggerates the BIG2(E738K)-induced tubulation of endosomal membranes. These observations together indicate that BIG2 is implicated in the structural integrity of the recycling endosome through activating class I ARFs.  相似文献   
38.
Summary An efficient Escherichia coli expression system for the production of mature-type alkaline serine protease II (mASP II) has been constructed. Complementary deoxyribonucleic acid-encoding mASP II was inserted into the inducible bacterial expression vector pGE-30. After introduction into E, coli, the plasmid was expressed by isopropyl-1-thio-β-d-galactopyranoside, and the recombinant product was purified using a Ni-nitrilotriacetic acid column The purified product had the expected NH2-terminal sequence and showed a scrapie isoform of prion protein-degrading activity using hamster scrapie 263K prions as a substrate.  相似文献   
39.
Some protein kinases are known to be activated by d-erythro-sphingosine (Sph) or N,N-dimethyl-d-erythro-sphingosine (DMS), but not by ceramide, Sph-1-P, other sphingolipids, or phospholipids. Among these, a specific protein kinase that phosphorylates Ser60, Ser59, or Ser58 of 14-3-3beta, 14-3-3eta, or 14-3-3zeta, respectively, was termed "sphingosine-dependent protein kinase-1" (SDK1) (Megidish, T., Cooper, J., Zhang, L., Fu, H., and Hakomori, S. (1998) J. Biol. Chem. 273, 21834-21845). We have now identified SDK1 as a protein having the C-terminal half kinase domain of protein kinase Cdelta (PKCdelta) based on the following observations. (i). Large-scale preparation and purification of proteins showing SDK1 activity from rat liver (by six steps of chromatography) gave a final fraction with an enhanced level of an approximately 40-kDa protein band. This fraction had SDK1 activity approximately 50000-fold higher than that in the initial extract. (ii). This protein had approximately 53% sequence identity to the Ser/Thr kinase domain of PKCdelta based on peptide mapping using liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry data. (iii). A search for amino acid homology based on the BLAST algorithm indicated that the only protein with high homology to the approximately 40-kDa band is the kinase domain of PKCdelta. The kinase activity of PKCdelta did not depend on Sph or DMS; rather, it was inhibited by these sphingoid bases, i.e. PKCdelta did not display any SDK1 activity. However, strong SDK1 activity became detectable when PKCdelta was incubated with caspase-3, which releases the approximately 40-kDa kinase domain. PKCdelta and SDK1 showed different lipid requirements and substrate specificity, although both kinase activities were inhibited by common PKC inhibitors. The high susceptibility of SDK1 to Sph and DMS accounts for their important modulatory role in signal transduction.  相似文献   
40.
Since root elongation is very sensitive to auxin, screening for reduced inhibition in root elongation has been an important method for the detection of auxin-resistant mutants. Two recessive auxin-resistant lines of rice (Oryza sativa L. ssp. indica cv. IR8), arm1 and arm2, have been isolated by screening for resistance to 2,4-dichlorophenoxyacetic acid (2,4-D). arm1 displays a variety of morphological defects including reduced lateral root formation, increased seminal root elongation, reduced root diameter, and impaired xylem development in roots, while the arm2 phenotype is almost similar to wild-type IR8 except for a slightly reduced lateral root formation, impaired xylem development in roots and an enhanced plant height. Although the growth of arm2 roots exhibited a resistance to 2,4-D, it was sensitive to 1-naphthaleneacetic acid (NAA) as the wild type. At the same time, the arm2 roots showed a reduced [14C]2,4-D uptake while uptake of [3H]NAA was normal, suggesting that the resistance to 2,4-D of arm2 roots is due to a defect in 2,4-D uptake. To investigate the possible interaction between arm1 and arm2 genes, a double mutant has been constructed. The roots of arm1 arm2 double mutant were more resistant to 2,4-D and formed fewer lateral roots than those of either single mutant, suggesting that the two genes show synergistic effects with respect to both auxin response and lateral root formation. By contrast, all these mutants displayed the normal gravitropic response in roots, as did the wild-type plants. Taken together, Arm1 and Arm2 genes seem to function in different processes in the auxin-response pathways leading to lateral root formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号