首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6475篇
  免费   447篇
  国内免费   1篇
  6923篇
  2022年   30篇
  2021年   70篇
  2020年   35篇
  2019年   55篇
  2018年   81篇
  2017年   67篇
  2016年   117篇
  2015年   157篇
  2014年   215篇
  2013年   343篇
  2012年   378篇
  2011年   402篇
  2010年   236篇
  2009年   203篇
  2008年   357篇
  2007年   376篇
  2006年   348篇
  2005年   305篇
  2004年   387篇
  2003年   310篇
  2002年   335篇
  2001年   170篇
  2000年   181篇
  1999年   142篇
  1998年   75篇
  1997年   80篇
  1996年   68篇
  1995年   74篇
  1994年   66篇
  1993年   53篇
  1992年   108篇
  1991年   103篇
  1990年   84篇
  1989年   97篇
  1988年   86篇
  1987年   98篇
  1986年   66篇
  1985年   73篇
  1984年   53篇
  1983年   40篇
  1982年   39篇
  1981年   35篇
  1980年   24篇
  1979年   42篇
  1978年   21篇
  1977年   20篇
  1975年   17篇
  1974年   26篇
  1973年   29篇
  1966年   17篇
排序方式: 共有6923条查询结果,搜索用时 0 毫秒
181.
Landscape and Ecological Engineering - There have been many earlier studies of the biodiversity and ecosystem services of abandoned farmlands, but studies of abandoned villages are limited,...  相似文献   
182.
183.
During endoplasmic reticulum (ER)–associated degradation (ERAD), terminally misfolded proteins are retrotranslocated from the ER to the cytosol and degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. The mechanisms involved in ERAD of nonglycoproteins, however, are poorly understood. Here we show that nonglycoprotein substrates are captured by BiP and then transferred to ERdj5 without going through the calnexin/EDEM1 pathway; after cleavage of disulfide bonds by ERdj5, the nonglycoproteins are transferred to the ERAD scaffold protein SEL1L by the aid of BiP for dislocation into the cytosol. When glucose trimming of the N-glycan groups of the substrates is inhibited, glycoproteins are also targeted to the nonglycoprotein ERAD pathway. These results indicate that two distinct pathways for ERAD of glycoproteins and nonglycoproteins exist in mammalian cells, and these pathways are interchangeable under ER stress conditions.  相似文献   
184.
In nonapoptotic cells, the phosphorylation level of myosin II is constantly maintained by myosin kinases and myosin phosphatase. During apoptosis, caspase-3–activated Rho-associated protein kinase I triggers hyperphosphorylation of myosin II, leading to membrane blebbing. Although inhibition of myosin phosphatase could also contribute to myosin II phosphorylation, little is known about the regulation of myosin phosphatase in apoptosis. In this study, we have demonstrated that, in apoptotic cells, the myosin-binding domain of myosin phosphatase targeting subunit 1 (MYPT1) is cleaved by caspase-3 at Asp-884, and the cleaved MYPT1 is strongly phosphorylated at Thr-696 and Thr-853, phosphorylation of which is known to inhibit myosin II binding. Expression of the caspase-3 cleaved form of MYPT1 that lacked the C-terminal end in HeLa cells caused the dissociation of MYPT1 from actin stress fibers. The dephosphorylation activity of myosin phosphatase immunoprecipitated from the apoptotic cells was lower than that from the nonapoptotic control cells. These results suggest that down-regulation of MYPT1 may play a role in promoting hyperphosphorylation of myosin II by inhibiting the dephosphorylation of myosin II during apoptosis.  相似文献   
185.
Carboxy PROXYL is a useful extracellular paramagnetic contrast reagent in electron spin resonance (ESR) and magnetic resonance imaging (MRI). Active transfer of the probe was investigated using an in situ liver model in rats. Carboxy PROXYL, a nitroxyl spin probe, was perfused into in situ liver perfusion system from Wistar rats. Concentration of nitroxyl form of the spin probe in effluent increased gradually after introducing perfusate with the spin probe and reached a plateau. The disappearance of Carboxy PROXYL from the perfusate was 40%, which could not be explained with its partition coefficient. Administration of non-selective inhibitors of organic anion transporters, p-aminohippuric acid and penicillin G, inhibited competitively and in a dose dependent manner the transfer of Carboxy PROXYL into rat liver in situ, resulting in increases of Carboxy PROXYL in the effluent. The results demonstrate that there is an active transfer system of an ESR contrast reagent into in situ rat liver through organic anion transporters.  相似文献   
186.
To clarify changes of neutrophil functions, mental conditions and relationships among them, 19 male elite long‐distance runners participated in this study for 6 months. Examinations, with informed consent, were carried out once a month. According to the results of physical characteristics, it was thought that training intensity was reduced after the main race, Hakone‐Ekiden. Neutrophil functions were estimated by indices of reactive oxygen species production, determined by luminol‐ and lucigenin‐dependent chemiluminescence (LmCL and LgCL, respectively) and cytochrome c reduction methods. The peak times (PT) in LmCL and LgCL (LgPT) were most prolonged in January and December, respectively. The peak heights (PH) in LmCL (LmPH) were enhanced in February. Decreased levels of negative categories in the profile of mood state (POMS) questionnaire and the total mood state (TMS) of POMS were observed in February without significance. Correlation analysis using measured values revealed significant negative correlation between LmPH and negative categories in POMS; however, these correlations were possibly a mere appearance, caused by personal differences. After eliminating personal differences, LgPT correlated positively to depression (p < 0.05), anger (p < 0.05), fatigue (p < 0.01) and TMS (p < 0.05). These results suggest that the mean time from the recognition of foreign matter to the maximum production of superoxide from neutrophils is prolonged in the mentally suppressed conditions found under continuous physical training. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
187.
Abstract

Chlorination of purine nucleosides protected with tert-butyldimethylsilyl (TBDMS) group was examined by the reaction of the C-8 lithiated species, generated by LDA, with p-toluenesulfonyl chloride as an electrophile. This provides a new method for the preparation of 8-chloropurine nucleosides.  相似文献   
188.
The sirtuins are members of the NAD+-dependent histone deacetylase family that contribute to various cellular functions that affect aging, disease, and cancer development in metazoans. However, the physiological roles of the fungus-specific sirtuin family are still poorly understood. Here, we determined a novel function of the fungus-specific sirtuin HstD/Aspergillus oryzae Hst4 (AoHst4), which is a homolog of Hst4 in A. oryzae yeast. The deletion of all histone deacetylases in A. oryzae demonstrated that the fungus-specific sirtuin HstD/AoHst4 is required for the coordination of fungal development and secondary metabolite production. We also show that the expression of the laeA gene, which is the most studied fungus-specific coordinator for the regulation of secondary metabolism and fungal development, was induced in a ΔhstD strain. Genetic interaction analysis of hstD/Aohst4 and laeA clearly indicated that HstD/AoHst4 works upstream of LaeA to coordinate secondary metabolism and fungal development. The hstD/Aohst4 and laeA genes are fungus specific but conserved in the vast family of filamentous fungi. Thus, we conclude that the fungus-specific sirtuin HstD/AoHst4 coordinates fungal development and secondary metabolism via the regulation of LaeA in filamentous fungi.  相似文献   
189.
190.
Benzo[a]pyrene (BaP) is metabolically activated by cytochrome P450 enzymes, and forms DNA adduct leading to mutations. Cytochrome P450 1A1 plays a central role in this activation step, and this enzyme is strongly induced by chemical agents that bind to the aryl hydrocarbon receptor (AhR), which is also known as a dioxin receptor. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand has not been shown to form any DNA adduct, but has a possibility to aggravate the toxicity of precarcinogenic polycyclic hydrocarbons through the induction of metabolic enzymes. We treated human hepatoma cells (HepG2) with TCDD, and subsequently exposed them to BaP to elucidate the synergistic effects on mutations. Surprisingly, mutant frequency induced by BaP at the hypoxanthine-guanine phosphribosyltransferase (HPRT) locus was decreased by pretreatment with TCDD. In correlation with decrease in the mutant frequencies, BaP–DNA adduct formation was also decreased by TCDD pretreatment. This suppressive effect of TCDD was more potent when the cells were exposed to (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a reactive metabolic intermediate of BaP. Among the enzymes catalyzing BaP oxidation and conjugation, cytochrome P450 1A1, 1A2, 3A4 and UDP-glucuronosyltransferase 1A1 mRNAs were induced by the exposure to TCDD. In cytochrome P450 1A1-deficient murine cells and cytochrome P450 1A1-uninducible human cells, TCDD could not suppress BPDE–DNA adduct formation. Further experiments using “Tet-On” cytochrome P450 1A1-overexpressing cells and a recombinant cytochrome P450 1A1 enzyme demonstrated that this is the key enzyme involved in the biotransformation of BaP, that is, both production and inactivation of BPDE. We conclude that TCDD-induced cytochrome P450 catalyzes the metabolism of BPDE to as yet-unidentified products that are not apparently DNA-reactive, thereby reducing mutations in hepatoma cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号