首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3903篇
  免费   217篇
  国内免费   8篇
  4128篇
  2022年   26篇
  2021年   44篇
  2020年   21篇
  2019年   29篇
  2018年   42篇
  2017年   30篇
  2016年   59篇
  2015年   118篇
  2014年   133篇
  2013年   265篇
  2012年   204篇
  2011年   200篇
  2010年   118篇
  2009年   111篇
  2008年   192篇
  2007年   216篇
  2006年   191篇
  2005年   211篇
  2004年   211篇
  2003年   204篇
  2002年   187篇
  2001年   103篇
  2000年   93篇
  1999年   77篇
  1998年   54篇
  1997年   53篇
  1996年   41篇
  1995年   27篇
  1994年   22篇
  1993年   33篇
  1992年   68篇
  1991年   59篇
  1990年   52篇
  1989年   45篇
  1988年   43篇
  1987年   51篇
  1986年   36篇
  1985年   51篇
  1984年   45篇
  1983年   30篇
  1982年   27篇
  1981年   36篇
  1980年   23篇
  1979年   30篇
  1978年   31篇
  1977年   19篇
  1975年   18篇
  1974年   18篇
  1973年   18篇
  1970年   17篇
排序方式: 共有4128条查询结果,搜索用时 15 毫秒
71.
Summary The existence of the surface-connected canalicular system (SCCS) has been demonstrated in semithick sections of the frog thrombocytes by the use of a high voltage electron microscope. The SCCS of the thrombocytes in Rana catesbeiana and Rana nigromaculata consists of numerous canaliculi and vesicles with a diameter of 250 nm, which join with one another to make a complex network throughout the cytoplasm. Although the SCCS of Xenopus laevis fits well into the pattern described in Rana catesbeiana, the diameter of the canaliculi of the SCCS is about 500 nm. The results of this study suggest that the SCCS is a specific organelle of the thrombocyte system common to submammals and mammals.  相似文献   
72.
By use of the antigen-antibody techniques we have studied whether asporogenic mutants of Bacillus subtilis can synthesize the spore coat protein. Antibody specific to spore coat protein was prepared and used to demonstrate that the spore coat protein was synthesized at the early stage of sporulation. We report here that asporogenic mutants synthesize the spore coat protein.  相似文献   
73.
74.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
75.
The cancer/testis antigens (CTAs), New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen gene (MAGE)-A4 are normally restricted to male germ cells but are aberrantly expressed in several cancers. Considering the limited information regarding their significance in osteosarcoma (OS), the purpose of this study was to determine the clinical significance of NY-ESO-1 and MAGE-A4 expression in OS. Nine patients with OS treated at Kindai University Hospital were included in the study. The median age was 27 years, and median follow-up period was 40 months. The specimens obtained at the time of biopsy were used to perform immunostaining for NY-ESO, MAGE-A4, p53, and Ki-67. The positive cell rates and positive case rates of NY-ESO, MAGE-A4, p53, and Ki-67 were calculated. The correlation between the positive cell rate of immunohistochemical markers was also calculated. The correlation between the positive cell rate of NY-ESO-1 or MAGE-A4 and tumor size or maximum standardized uptake (SUV-max) was also determined. The positive cell rates of NY-ESO-1 or MAGE-A4 in continuous disease-free (CDF) cases were also compared with those in alive with disease (AWD) or dead of disease (DOD) cases. The average positive cell rates of NY-ESO, MAGEA4, p53, and Ki-67 were 71.7%, 85.1%, 16.2%, and 14.7%, and their positive case rates were 33.3%, 100%, 44.4%, and 100%, respectively. The positivity rates of NY-ESO-1 and p53 were strongly correlated, whereas those of NY-ESO-1 and Ki-67 were moderately correlated. The MAGE-A4 and p53 positivity rates and the MAGE-A4 and Ki-67 positive cell rates were both strongly correlated. The NY-ESO-1 and MAGE-A4 positivity rates were moderately correlated. The positive correlation between the NY-ESO-1 positive cell rate and tumor size was medium, and that between the MAGE-A4 positivity rate and SUV-max was very strong. There was no significant difference in the positive cell rates of NY-ESO-1 or MAGE-A4 between CDF cases and AWD or DOD cases. Overall, our results suggest that NY-ESO-1 and MAGE-A4 may be involved in the aggressiveness of OS.Key words: New York esophageal squamous cell carcinoma-1 (NY-ESO-1), melanoma antigen gene (MAGE)- A4, osteosarcoma, prognosis, cancer/testis antigen (CTA), immunohistochemistry  相似文献   
76.
The outcome of hepatitis C virus (HCV) infection varies among individuals, but the genetic factors involved remain unknown. We conducted a population-based association study in which 238 Japanese individuals positive for anti-HCV antibody were genotyped for 269 single nucleotide polymorphisms (SNPs) in 103 candidate genes that might influence the course of infection. Altogether, 50 SNPs in 32 genes were listed. Genetic polymorphisms in IL4, IL8RB, IL10RA, PRL, ADA, NFKB1, GRAP2, CABIN1, IFNAR2, IFI27, IFI41, TNFRSF1A, ALDOB, AP1B1, SULT2B1, EGF, EGFR, TGFB1, LTBP2, and CD4 were associated with persistent viremia (P < 0.05), whereas those in IL1B, IL1RL1, IL2RB, IL12RB1, IL18R1, STAT5A, GRAP2, CABIN1, IFNAR1, Mx1, BMP8, FGL1, LTBP2, CD34, and CD80 were associated with different serum alanine aminotransferase levels in HCV carriers (P < 0.05). The sorted genes allow us to draw novel hypotheses for future studies of HCV infection to ultimately identify bona fide genes and their variations.  相似文献   
77.
78.
79.
Hybridomas secreting monoclonal antibodies to transferrin receptor (TFR) were isolated. One of these antibodies, U-1, recognized the cytoplasmic domain of TFR and the others, N-2 and W-3, recognized its cell surface domains. Only antibody W-3 competed with transferrin (TF) for binding to TFR. Antibody U-1 bound to purified TFR but not to 35S- or 125I-TFR in cell extracts. 125I-Antibody U-1 bound to TFR alone in cell extracts when TFR was bound to antibody N-2-Sepharose 4B, but even in the presense of cell extracts it did not bind to TFR bound to antibody W-3-Sepharose 4B. Antibody W-3 co-precipitated TFR and a protein of about 30 kDa from cell extracts, and also reacted with the 30 kDa protein in cell extracts in the absence of TFR. Based on these results, the existence of two different states of the cytoplasmic domain of TFR is discussed.  相似文献   
80.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号