首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2061篇
  免费   93篇
  国内免费   7篇
  2022年   13篇
  2021年   25篇
  2020年   10篇
  2019年   16篇
  2018年   24篇
  2017年   19篇
  2016年   38篇
  2015年   75篇
  2014年   78篇
  2013年   130篇
  2012年   132篇
  2011年   115篇
  2010年   66篇
  2009年   67篇
  2008年   132篇
  2007年   144篇
  2006年   119篇
  2005年   145篇
  2004年   142篇
  2003年   116篇
  2002年   118篇
  2001年   37篇
  2000年   35篇
  1999年   25篇
  1998年   35篇
  1997年   26篇
  1996年   22篇
  1995年   21篇
  1994年   14篇
  1993年   16篇
  1992年   24篇
  1991年   18篇
  1990年   17篇
  1989年   6篇
  1988年   12篇
  1987年   14篇
  1986年   8篇
  1985年   6篇
  1984年   15篇
  1983年   13篇
  1982年   9篇
  1981年   17篇
  1980年   10篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
  1972年   2篇
排序方式: 共有2161条查询结果,搜索用时 15 毫秒
111.
112.
Searching for proteins in platelets that can interact with the N-terminal SH3 domain of CrkL (using a combination of a pull-down assay followed by mass spectrometry), we have found that human platelets express an ADP-ribosylation factor (Arf)-specific GTPase-activating protein (GAP), ASAP1, as a CrkL-binding protein. In spreading platelets, most endogenous ASAP1 is localized at peripheral focal adhesions. To determine the physiologic significance of the CrkL-ASAP1 association, we overexpressed CrkL, ASAP1, or both in combination in COS7 cells. Unlike endogenous ASAP1 in platelets, overexpressed ASAP1 showed diffuse cytoplasmic distribution. However, when co-expressed with wild-type CrkL, both endogenous and expressed ASAP1 accumulated at CrkL-induced focal adhesions. An SH2-mutated CrkL, which cannot localize at focal adhesions, failed to recruit ASAP1 into focal adhesions. Thus, CrkL appears to be a lynchpin between ASAP1 and peripheral focal adhesions.  相似文献   
113.
Chatani E  Nonomura K  Hayashi R  Balny C  Lange R 《Biochemistry》2002,41(14):4567-4574
To clarify the structural role of Phe46 inside the hydrophobic core of bovine pancreatic ribonuclease A (RNase A), thermal and pressure unfolding of wild-type RNase A and three mutant forms (F46V, F46E, and F46K) were analyzed by fourth-derivative UV absorbance spectroscopy. All the mutants, as well as the wild type, exhibited a two-state transition during both thermal and pressure unfolding, and both T(m) and P(m) decreased markedly when Phe46 was replaced with valine, glutamic acid, or lysine. The strongest effect was on the F46K mutant and the weakest on F46V. Both unfolding processes produced identical blue shifts in the fourth-derivative spectra, indicating that the tyrosine residues are similarly exposed in the temperature- and pressure-induced unfolded states. A comparison of Gibbs free energies determined from the pressure and temperature unfoldings, however, gave DeltaG(p)/DeltaG(t) ratios (r) of 1.7 for the wild type and 0.92 +/- 0.03 for the mutants. Furthermore, the DeltaV value for each mutant was larger than that for the wild type. CD spectra and activity measurements showed no obvious major structural differences in the folded state, indicating that the structures of the Phe46 mutants and wild type differ in the unfolded state. We propose a model in which Phe46 stabilizes the hydrophobic core at the boundary between two structural domains. Mutation of Phe46 decreases protein stability by weakening the unfolding cooperativity between these domains. This essential function of Phe46 in RNase A stability indicates that it belongs to a chain-folding initiation site.  相似文献   
114.
Glutathione peroxidase catalyzes the reduction of hydrogen peroxide and organic hydroperoxide by glutathione and functions in the protection of cells against oxidative damage. Glutathione peroxidase exists in several forms that differ in their primary structure and localization. We have also shown that selenoprotein P exhibits a glutathione peroxidase-like activity (Saito, Y., Hayashi, T., Tanaka, A., Watanabe, Y., Suzuki, M., Saito, E., and Takahashi, K. (1999) J. Biol. Chem. 274, 2866-2871). To understand the physiological significance of the diversity among these enzymes, a comparative study on the peroxide substrate specificity of three types of ubiquitous glutathione peroxidase (cellular glutathione peroxidase, phospholipid hydroperoxide glutathione peroxidase, and extracellular glutathione peroxidase) and of selenoprotein P purified from human origins was done. The specific activities and kinetic parameters against two hydroperoxides (hydrogen peroxide and phosphatidylcholine hydroperoxide) were determined. We next examined the thiol specificity and found that thioredoxin is the preferred electron donor for selenoprotein P. These four enzymes exhibit different peroxide and thiol specificities and collaborate to protect biological molecules from oxidative stress both inside and outside the cells.  相似文献   
115.
Axotomy-induced neuronal death occurs in neonatal motoneurons, but not in adult rat. Here we demonstrated that during the course of postnatal development, nerve injury induced down-regulation of the glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in axotomized hypoglossal motoneurons of rat are gradually converted to the adult up-regulation pattern of response. The compensatory expression of GFRalpha1 specifically in the injured motoneurons of neonates by adenovirus succeeded in rescuing the injured neurons without an application of growth factors. To the contrary, the nuclear antisense RNA for GFRalpha1 expression accelerates the axotomy-induced neuronal death in pups. These findings suggest that the receptor expression response after nerve injury is critical for the determination of injured motoneuron fate.  相似文献   
116.
The clinical use of doxorubicin, an antineoplasmic agent, is limited by its extensive cardiotoxicity which is mediated by the mobilization of intracellular Ca2+ from SR. In order to elucidate the mechanism of Ca2+ release, we analyzed the binding sites of doxorubicin on rabbit cardiac SR (sarcoplasmic reticulum). One of the binding sites was identified as cardiac-type ryanodine receptor (RyR2) which was purified by immunoprecipitation from solubilized cardiac SR in the presence of DTT. Ligand blot analysis revealed the direct binding of doxorubicin to RyR2. The binding of doxorubicin to RyR2 was specific and displaced by caffeine. Both doxorubicin and caffeine enhanced [3H]-ryanodine binding to RyR2 in a Ca2+ dependent manner. These results suggest that there is a doxorubicin binding site on RyR2.  相似文献   
117.
Cheng Z  Lu BR  Baldwin BS  Sameshima K  Chen JK 《Hereditas》2002,136(3):231-239
Kenaf (Hibiscus cannabinus L.) is a fiber crop classified in the genus Hibiscus (Malvaceae), and has a great potential for its multipurpose utilization, in addition to its traditional usage. Varietal identification of kenaf is always problematic and knowledge on genetic diversity of kenaf varieties is also limited, which significantly hindered our effective utilization and conservation of the valuable kenaf germplasm. In order to find a proper method for identifying kenaf varieties and studying their variation, morpho-agronomic characters and random amplified polymorphic DNA (RAPD) markers were analyzed among 14 kenaf varieties commonly used in Japan. Data from morphological analysis showed that the included kenaf varieties could be divided into three major groups. The characters, such as middle stem diameter, whole stalk weight, and days to 50% flowering, are highly responsible for the variation of the kenaf varieties, but it is difficult to identify individual varieties merely by the morpho-agronomic characters. On the other hand, clearly separation of the kenaf varieties was achieved based on the RAPD variation patterns. Genetic relationship of the kenaf varieties can also be traced through the analysis of RAPD and morph-agronomic variation. It is concluded from the present study that RAPD analysis is an effective tool in identifying of kenaf varieties and determining their genetic relationships, particularly when combined with the analysis of morpho-agronomic characters.  相似文献   
118.
119.
The effect of ATP on calcium binding of the Ca2+-ATPase of the sarcoplasmic reticulum has not been clarified. By comparing the calcium dependence of the ATPase activity and of phosphorylation of the ATPase molecules with that of calcium binding in the absence of ATP, we show the existence of two types of regulatory site of the enzyme molecules at which ATP binding variously improves the calcium binding performance of the molecules depending on the aggregation state of the molecules and pH; the two regulatory sites bind ATP at submillimolar (0.25 mm) and millimolar (5 mm) ATP, respectively. The results are discussed based on a model of two conformational variants (A and B forms) of the chemically equivalent ATPase molecules (Nakamura, J., and Furukohri, T. (1994) J. Biol. Chem. 269, 30818-30821). For example, in the sarcoplasmic reticulum membrane at pH 7.40, submillimolar ATP converted the calcium binding manner of the A form from noncooperative (Hill number (n(H)) of approximately 1) to cooperative (n(H) approximately 2), concurrent with a decrease in the apparent calcium affinity (K(0.5)) from 2-6 to 0.1-0.3 microm. The binding of the A form became almost the same as that of the B form (n(H) approximately 2, K(0.5) approximately 0.2 microm), which was not affected by ATP. Millimolar ATP further decreased the K(0.5) of the cooperative binding of the two forms to approximately 0.05 microm. Regulation of the calcium binding performance by ATP is discussed in terms of monomeric and oligomeric pathway models.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号