首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7470篇
  免费   480篇
  国内免费   7篇
  7957篇
  2022年   41篇
  2021年   71篇
  2019年   71篇
  2018年   81篇
  2017年   77篇
  2016年   119篇
  2015年   169篇
  2014年   201篇
  2013年   427篇
  2012年   389篇
  2011年   301篇
  2010年   196篇
  2009年   186篇
  2008年   359篇
  2007年   368篇
  2006年   360篇
  2005年   346篇
  2004年   377篇
  2003年   356篇
  2002年   367篇
  2001年   254篇
  2000年   238篇
  1999年   196篇
  1998年   101篇
  1997年   83篇
  1996年   67篇
  1995年   58篇
  1994年   64篇
  1993年   65篇
  1992年   158篇
  1991年   126篇
  1990年   150篇
  1989年   143篇
  1988年   121篇
  1987年   114篇
  1986年   105篇
  1985年   90篇
  1984年   90篇
  1983年   73篇
  1982年   56篇
  1981年   61篇
  1980年   46篇
  1979年   80篇
  1978年   59篇
  1977年   53篇
  1976年   40篇
  1975年   46篇
  1974年   44篇
  1973年   41篇
  1972年   47篇
排序方式: 共有7957条查询结果,搜索用时 0 毫秒
121.
A mutant of Corynebacterim glutamicum ('Brevibacterium flayum') ATCC14067 with a reduced H+-ATPase activity, F172-8, was obtained as a spontaneous neomycin-resistant mutant. The ATPase activity of strain F172-8 was reduced to about 25% of that of the parental strain. Strain F172-8 was cultured in a glutamic-acid fermentation medium containing 100 g/l of glucose using ajar fermentor. It was found that glucose consumption per cell during the exponential phase was higher by 70% in the mutant than in the parent. The respiration rate per cell of the mutant also increased to twice as much as that of the parent. However, the growth rate of the mutant was lower than that of the parent. Under those conditions, the parent produced more than 40 g/l glutamic acid, while the mutant hardly produced any glutamic acid. Instead the mutant produced 24.6 g/l lactic acid as the main metabolite of glucose. Remarkably, the accumulation of pyruvate and pyruvate-family amino acids, i.e., alanine and valine, was detected in the mutant. On the other hand, the parent accumulated alpha-ketoglutaric acid and a glutamate-family amino acid, proline, as major by-products. It was concluded that the decrease in the H+-ATPase activity caused the above-mentioned metabolic changes in strain F172-8, because a revertant of strain F172-8, R2-1, with a H+-ATPase activity of 70% of that of strain ATCC14067, showed a fermentation profile similar to that of the parent. Sequence analyses of the atp operon genes of these strains identified one point mutation in the gamma subunit in strain F172-8.  相似文献   
122.
Apple simple sequence repeats (SSRs) were intergenerically applied to the characterization of 36 pear accessions, including 19 Japanese pears (Pyrus pyrifolia), 7 Chinese pears (P. bretschneideri, P. ussuriensis), 5 European pears (P. communis), 3 wild relatives (P. calleryana), and 2 hybrids between P. pyrifolia and P. communis. All of the tested SSR primers derived from apple produced discrete amplified fragments in all pear accessions. Nucleotide repeats were detected in the amplified bands by both Southern blot and sequencing analysis, and nucleotide sequences of pear were compared with those of apple. The differences in fragment size among pear or between pear and apple were, in many cases, due to the differences in repeat number. Interestingly, the DNA sequence of flanking regions in apple was highly conserved in pear. Hybrids from P. pyrifolia×P. communis showed one fragment inherited from each parent in all scorable cases, which suggested that each primer pair amplified fragments originating from the same locus. A total of 79 alleles were detected from seven SSR loci in pear, and all pear varieties except for the mutants could be differentiated. In conclusion, SSRs isolated from apple are highly conserved in pear and could be utilized as DNA markers in the latter genus. Received: 17 July 2000 / Accepted: 22 September 2000  相似文献   
123.
The active species of aspartase from Escherichia coli is further 3-5 fold activated upon limited proteolysis with trypsin releasing carboxy-terminal peptides as reported previously (N. Yumoto, M. Tokushige, and R. Hayashi. Biochim. Biophys. Acta, 616, 319 (1980) ). Survey of the protease specificity for the activation revealed that subtilisin BPN' and several other proteases having far broader substrate specificity than trypsin also activated the enzyme. The results of sequence analyses revealed that subtilisin BPN' cleaved mainly the serylarginine bond near the carboxy-terminal and released an octapeptide, while trypsin cleaved mainly the arginyltyrosine bond which is just next to the subtilisin cleavage site. These results suggest that the protease-mediated activation does not necessarily require a site-specific peptidyl cleavage, but the cleavage of any bond within a certain region centered at arginine, the eighth residue from the carboxy-terminal, is sufficient.  相似文献   
124.
When methylmercury was incubated in the presence of selenite and reduced glutathione (GSH), the mercury which was extracted into benzene under acidic condition decreased gradually with the elapse of time. This decrease was due to the cleavage of mercury-carbon bond of methylmercury. The reaction did not proceed when selenite or GSH was singly added to the reaction mixture. L-Cysteine, 2-mercaptoethanol and sodium sulfide in place of GSH also were effective for decomposition of methylmercury in combination with selenite, but oxidized glutathione (GSSG) and L-cystine were not. This suggests that reduction of selenite is needed for the degradation of methylmercury. Thus, the effect of reduced metabolites of selenite produced by GSH was investigated. Glutathione selenotrisulfide (GSSeSG) requierd GSH for the degradation of methylmercury, whereas H2Se possessed a strong activity even in the absence of GSH. This may indicate that H2Se is involved directly in the conversion of methylmercury to inorganic mercury. This phenomenon found in in vitro experiments is discussed in relation to the biotransformation of methylmercury.  相似文献   
125.
Allergic conditions result in the increase of immunoglobulin (Ig)E-producing plasma cells (IgE-PCs); however, it is unclear how IgE production is qualitatively controlled. In this study, we found that IgE-PCs in spleen of immunized mice formed homotypic cell aggregates. By employing IgE-producing hybridomas (IgE-hybridomas) as a model of IgE-PCs, we showed that these cells formed aggregates in the presence of specific antigens (Ags). The formation of the Ag-induced cell aggregation involved secreted IgE and Fcγ receptor (FcγR)II/FcγRIII, but not FcεRs. Ag-induced cell aggregation plus lipopolysaccharide signaling resulted in an enhancement of IgE production in aggregated IgE-hybridomas. Furthermore, the administration of anti-FcγRII/FcγRIII antagonistic monoclonal antibody to immunized mice tended to reduce the splenic IgE-PC aggregation as well as the serum IgE levels. Taken together, our results suggested that Ag-IgE complexes induced IgE-PCs aggregation via FcγRII/FcγRIII, leading to the enhancement of IgE production. These findings suggest the presence of a novel mechanism for regulation of IgE production.  相似文献   
126.
127.
128.
It is well recognized that the Shiga-like toxins (Stxs) preferentially bind to Gb3 glycolipids and the cholera toxin (CT) and heat-labile enterotoxin (LTp) bind to GM1 gangliosides. After binding to the cell surface, A-B bacterial enterotoxins have to be internalized by endocytosis. The transport of the toxin-glycolipid complex has been documented in several manners but the actual mechanisms are yet to be clarified. We applied a heterobifunctional cross-linker, sulfosuccinimidyl-2-(p-azidosalicylamido)-1,3'-dithiopropionate (SASD), to detect the membrane proteins involved in the binding and the transport of A-B bacterial enterotoxins in cultured cells. Both Stx1 and Stx2 bound to the detergent-insoluble microdomain (DIM) of Vero cells and Caco-2 cells, which were susceptible to the toxin, but neither was bound to insusceptible CHO-K1 cells. Both CT and LTp bound to the DIM of Vero cells, Caco-2 cells, and CHO-K1 cells. In a cross-linking experiment, Stx1 cross-linked only with a 27-kDa molecule, while Stx2, which was more potently toxic than Stx1, cross-linked with 27- and 40-kDa molecules of Vero cells as well as of Caco-2 cells; moreover, no molecules were cross-linked with the insusceptible CHO-K1 cells. LTp was cross-linked only to the 27-kDa molecule of these three cell types but the CT, which was more toxic than LTp, was also cross-linked with 27- and 40-kDa molecules of Vero cells, Caco-2 cells, and CHO-K1 cells. The 27- and the 40-kDa molecules might play a role in the endocytosis and retrograde transport of A-B bacterial enterotoxins.  相似文献   
129.
A highly purified fucoidin was isolated from Pelvetia wrightii by an improved method, which involves the removal of alginate with calcium chloride solution and purification with cetylpyridinium chloride (CPC).

To this end, the critical salt concentrations of the cetylpyridinium complex of alginic acid and fucoidin in salt solutions (KCl, NaCl, CaCl2) were determined.

The fucoidin of this alga contained both fucose and galactose as its constituents, in a ratio of approximately 10:1, and it is considered to be a galactofucan sulfate.  相似文献   
130.

Background

The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce.

Methodology/Principal Findings

We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern.

Conclusions/Significance

In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号