全文获取类型
收费全文 | 389篇 |
免费 | 29篇 |
专业分类
418篇 |
出版年
2024年 | 1篇 |
2022年 | 1篇 |
2021年 | 5篇 |
2020年 | 6篇 |
2019年 | 6篇 |
2018年 | 1篇 |
2017年 | 3篇 |
2016年 | 7篇 |
2015年 | 16篇 |
2014年 | 17篇 |
2013年 | 24篇 |
2012年 | 25篇 |
2011年 | 32篇 |
2010年 | 20篇 |
2009年 | 16篇 |
2008年 | 28篇 |
2007年 | 32篇 |
2006年 | 29篇 |
2005年 | 28篇 |
2004年 | 26篇 |
2003年 | 15篇 |
2002年 | 20篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 3篇 |
1997年 | 7篇 |
1996年 | 4篇 |
1995年 | 5篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 3篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有418条查询结果,搜索用时 31 毫秒
51.
Tetsuharu Sugimoto Chihiro Kanayama Masateru Hiyoshi Daisuke Kosumi Kazufumi Takamune 《Development, growth & differentiation》2024,66(1):66-74
We previously identified Xenopus tudor domain containing 6/Xenopus tudor repeat (Xtdrd6/Xtr), which was exclusively expressed in the germ cells of adult Xenopus laevis. Western blot analysis showed that the XTdrd6/Xtr protein was translated in St. I/II oocytes and persisted as a maternal factor until the tailbud stage. XTdrd6/Xtr has been reported to be essential for the translation of maternal mRNA involved in oocyte meiosis. In the present study, we examined the distribution of the XTdrd6/Xtr protein during oogenesis and early development, to predict the time point of its action during development. First, we showed that XTdrd6/Xtr is localized to germinal granules in the germplasm by electron microscopy. XTdrd6/Xtr was found to be localized to the origin of the germplasm, the mitochondrial cloud of St. I oocytes, during oogenesis. Notably, XTdrd6/Xtr was also found to be localized around the nuclear membrane of St. I oocytes. This suggests that XTdrd6/Xtr may immediately interact with some mRNAs that emerge from the nucleus and translocate to the mitochondrial cloud. XTdrd6/Xtr was also detected in primordial germ cells and germ cells throughout development. Using transgenic Xenopus expressing XTdrd6/Xtr with a C-terminal FLAG tag produced by homology-directed repair, we found that the zygotic translation of the XTdrd6/Xtr protein began at St. 47/48. As germ cells are surrounded by gonadal somatic cells and are considered to enter a new differentiation stage at this phase, the newly synthesized XTdrd6/Xtr protein may regulate the translation of mRNAs involved in the new steps of germ cell differentiation. 相似文献
52.
R Munakata T Inoue T Koeduka K Sasaki Y Tsurumaru A Sugiyama Y Uto H Hori J Azuma K Yazaki 《Bioscience, biotechnology, and biochemistry》2012,76(7):1389-1393
Coumarins, a large group of polyphenols, play important roles in the defense mechanisms of plants, and they also exhibit various biological activities beneficial to human health, often enhanced by prenylation. Despite the high abundance of prenylated coumarins in citrus fruits, there has been no report on coumarin-specific prenyltransferase activity in citrus. In this study, we detected both O- and C-prenyltransferase activities of coumarin substrates in a microsome fraction prepared from lemon (Citrus limon) peel, where large amounts of prenylated coumarins accumulate. Bergaptol was the most preferred substrate out of various coumarin derivatives tested, and geranyl diphosphate (GPP) was accepted exclusively as prenyl donor substrate. Further enzymatic characterization of bergaptol 5-O-geranyltransferase activity revealed its unique properties: apparent K(m) values for GPP (9 μM) and bergaptol (140 μM) and a broad divalent cation requirement. These findings provide information towards the discovery of a yet unidentified coumarin-specific prenyltransferase gene. 相似文献
53.
Bowman-birk proteinase inhibitor confers heavy metal and multiple drug tolerance in yeast 总被引:1,自引:0,他引:1
Cultured Coptis japonica cells show tolerance to various toxic compounds. By yeast functional screening of cadmium (Cd) plates with its cDNA library, we isolated a gene encoding Bowman-Birk proteinase inhibitor (CjBBI). The yeast transformant of CjBBI showed multiple tolerance to various drugs adding to Cd, and revealed reduced Cd accumulation in cells. Preferential organs for Cjbbi expression were aerial parts of intact plants, and the subcellular localization of CjBBI was shown, using its green fluorescent protein fusion, to be the apoplast. Induction of Cjbbi expression by Cd treatment suggested that CjBBI was responsible for the tolerance to Cd observed in C. japonica cells. 相似文献
54.
Certain sequences, known as chameleon sequences, take both alpha- and beta-conformations in natural proteins. We demonstrate that a wild chameleon sequence fused to the C-terminal alpha-helix or beta-sheet in foreign stable proteins from hyperthermophiles forms the same conformation as the host secondary structure. However, no secondary structural formation is observed when the sequence is attached to the outside of the secondary structure. These results indicate that this sequence inherently possesses an ability to make either alpha- or beta-conformation, depending on the sequentially neighboring secondary structure if little other nonlocal interaction occurs. Thus, chameleon sequences take on a satellite state through contagion by the power of a secondary structure. We propose this "conformational contagion" as a new nonlocal determinant factor in protein structure and misfolding related to protein conformational diseases. 相似文献
55.
RNase HI from the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) is stabilized by its C-terminal residues. In this work, the stabilization effect of the Sto-RNase HI C-terminal residues was investigated in detail by thermodynamic measurements of the stability of variants lacking the disulfide bond (C58/145A), or the six C-terminal residues (ΔC6) and by structural analysis of ΔC6. The results showed that the C-terminal does not affect overall structure and stabilization is caused by local interactions of the C-terminal, suggesting that the C-terminal residues could be used as a "stabilization tag." The Sto-RNase HI C-terminal residues (-IGCIILT) were introduced as a tag on three proteins. Each chimeric protein was more stable than its wild-type protein. These results suggested the possibility of a simple stabilization technique using a stabilization tag such as Sto-RNase HI C-terminal residues. 相似文献
56.
Sinsereekul N Foophow T Yamanouchi M Koga Y Takano K Kanaya S 《The FEBS journal》2011,278(11):1901-1911
Pro-Tk-SP from Thermococcus kodakaraensis consists of the four domains: N-propeptide, subtilisin (EC 3.4.21.62) domain, β-jelly roll domain and C-propeptide. To analyze the maturation process of this protein, the Pro-Tk-SP derivative with the mutation of the active-site serine residue to Cys (Pro-Tk-S359C), Pro-Tk-S359C derivatives lacking the N-propeptide (ProC-Tk-S359C) and both propeptides (Tk-S359C), and a His-tagged form of the isolated C-propeptide (ProC*) were constructed. Pro-Tk-S359C was purified mostly in an autoprocessed form in which the N-propeptide is autoprocessed but the isolated N-propeptide (ProN) forms a stable complex with ProC-Tk-S359C, indicating that the N-propeptide is autoprocessed first. The subsequent maturation process was analyzed using ProC-Tk-S359C, instead of the ProN:ProC-Tk-S359C complex. The C-propeptide was autoprocessed and degraded when ProC-Tk-S359C was incubated at 80 °C in the absence of Ca(2+). However, it was not autoprocessed in the presence of Ca(2+). Comparison of the susceptibility of ProC* to proteolytic degradation in the presence and absence of Ca(2+) suggests that the C-propeptide becomes highly resistant to proteolytic degradation in the presence of Ca(2+). We propose that Pro-Tk-SP derivative lacking N-propeptide (Val114-Gly640) represents a mature form of Pro-Tk-SP in a natural environment. The enzymatic activity of ProC-Tk-S359C was higher than (but comparable to) that of Tk-S359C, suggesting that the C-propeptide is not important for activity. However, the T(m) value of ProC-Tk-S359C determined by far-UV CD spectroscopy was higher than that of Tk-S359C by 25.9 °C in the absence of Ca(2+) and 7.5 °C in the presence of Ca(2+), indicating that the C-propeptide contributes to the stabilization of ProC-Tk-S359C. 相似文献
57.
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-subtilisin) is matured from Pro-Tk-subtilisin upon autoprocessing and degradation of the propeptide. The crystal structures of the autoprocessed and mature forms of Tk-subtilisin were determined at 1.89 A and 1.70 A resolution, respectively. Comparison of these structures with that of unautoprocessed Pro-Tk-subtilisin indicates that the structure of Tk-subtilisin is not seriously changed during maturation. However, one unique Ca(2+)-binding site (Ca-7) is identified in these structures. In addition, the N-terminal region of the mature domain (Gly70-Pro82), which binds tightly to the main body in the unautoprocessed form, is disordered and mostly truncated in the autoprocessed and mature forms, respectively. Interestingly, this site is formed also in the unautoprocessed form when its crystals are soaked with 10 mM CaCl(2), as revealed by the 1.87 A structure. Along with the formation of this site, the N-terminal region (Leu75-Thr80) is disordered, with the scissile peptide bond contacting with the active site. These results indicate that the calcium ion binds weakly to the Ca-7 site in the unautoprocessed form, but is trapped upon autoprocessing. We propose that the Ca-7 site is required to promote the autoprocessing reaction by stabilizing the autoprocessed form, in which the new N terminus of the mature domain is structurally disordered. Furthermore, the crystal structure of the Tk-propeptide:S324A-subtilisin complex, which was formed by the addition of separately expressed proteins, was determined at 1.65 A resolution. This structure is virtually identical with that of the autoprocessed form, indicating that the interaction between the two domains is highly intensive and specific. 相似文献
58.
59.
60.
FKBP22 from a psychrotrophic bacterium Shewanella sp. SIB1, is a dimeric protein with peptidyl prolyl cis-trans isomerase (PPIase) activity. According to homology modeling, it consists of an N-terminal domain, which is involved in dimerization of the protein, and a C-terminal catalytic domain. A long alpha3 helix spans these domains. An N-domain with the entire alpha3 helix (N-domain+) and a C-domain with the entire alpha3 helix (C-domain+) were overproduced in Escherichia coli in a His-tagged form, purified, and their biochemical properties were compared with those of the intact protein. C-domain+ was shown to be a monomer and enzymatically active. Its optimum temperature for activity (10 degrees C) was identical to that of the intact protein. Determination of the PPIase activity using peptide and protein substrates suggests that dimerization is required to make the protein fully active for the protein substrate or that the N-domain is involved in substrate-binding. The differential scanning calorimetry studies revealed two distinct heat absorption peaks at 32.5 degrees C and 46.6 degrees C for the intact protein, and single heat absorption peaks at 44.7 degrees C for N-domain+ and 35.6 degrees C for C-domain+. These results indicate that the thermal unfolding transitions of the intact protein at lower and higher temperatures represent those of C- and N-domains, respectively. Because the unfolding temperature of C-domain+ is much higher than its optimum temperature for activity, SIB1 FKBP22 may adapt to low temperatures by increasing a local flexibility around the active site. This study revealed the relationship between the stability and the activity of a psychrotrophic FKBP22. 相似文献