首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   946篇
  免费   105篇
  国内免费   2篇
  2022年   9篇
  2021年   12篇
  2020年   5篇
  2019年   10篇
  2018年   9篇
  2017年   10篇
  2016年   18篇
  2015年   32篇
  2014年   31篇
  2013年   77篇
  2012年   48篇
  2011年   66篇
  2010年   37篇
  2009年   30篇
  2008年   51篇
  2007年   50篇
  2006年   51篇
  2005年   48篇
  2004年   40篇
  2003年   42篇
  2002年   35篇
  2001年   29篇
  2000年   27篇
  1999年   29篇
  1998年   13篇
  1997年   8篇
  1996年   8篇
  1995年   12篇
  1994年   5篇
  1993年   7篇
  1992年   14篇
  1991年   22篇
  1990年   12篇
  1989年   7篇
  1988年   7篇
  1987年   9篇
  1986年   11篇
  1985年   12篇
  1984年   8篇
  1983年   6篇
  1980年   5篇
  1978年   7篇
  1976年   8篇
  1975年   14篇
  1974年   6篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   8篇
  1969年   8篇
排序方式: 共有1053条查询结果,搜索用时 15 毫秒
41.
Phosphatidylethanolamine N-methyltransferase, which catalyzes all the three-step methylation from phosphatidylethanolamine to phosphatidylcholine, was purified to homogeneity from the membrane fraction of Zymomonas mobilis. The purified enzyme exhibited a single band on SDS- polyacrylamide gel electrophoresis and its molecular weight was estimated to be 42,000 on comparison with those of marker proteins. The three activities dependent on phosphatidylethanolamine, phosphatidyl-N monomethylethanolamine and phosphatidyl-N Af-dimethylethanolamine of the purified enzyme showed similar pH profiles with an optimum of pH 8.5, and were enhanced in the same manner by Triton X-100 and l-cysteine. The maximal velocities of the three reactions for S-adenosyl-l-methionine were 0.04, 1.36 and 0.69 nmol/mg protein/min with apparent Michaelis constant values of 3.6, 1.9 and 3.9 fiM, respectively, indicating that the first-step methylation is rate-limiting for the pathway in the organism.  相似文献   
42.
Sixteen triterpenoid glycosides, named S13 to S25, S37, S38 and S40, were isolated from the root of Bupleurum polyclonum Y. Li et S. L. Pan, and their structures were determined from NMR spectral analyses. Among them, S24, S37 and S38 were found to be new substances, their structures being established as 30-β-d-glucopyranosyl 30-hydroxysaikosaponin-b2, 2″-O-acetylsaikosaponin-b2 and 3″-O>-acetylsaikosaponin-b2, respectively.  相似文献   
43.
Caffeine (1,3,7-trimethixanthine) is a typical purine alkaloid produced in more than 80 plant species. Its biological role is considered to strengthen plant''s defense capabilities, directly as a toxicant to biotic attackers (allelopathy) and indirectly as an activator of defense system (priming). Caffeine is actively secreted into rhizosphere through primary root, and possibly affects the structure of microbe community nearby. The fungal community in coffee plant rhizosphere is enriched with particular species, including Trichoderma family, a mycoparasite that attacks and kills phytopathogens by coiling and destroying their hyphae. In the present study, the caffeine response of 8 filamentous fungi, 4 mycoparasitic Trichoderma, and 4 prey phytopathogens, was examined. Results showed that allelopathic effect of caffeine on fungal growth and development was differential, being stronger on pathogens than on Trichoderma species. Upon confronting, the prey immediately ceased the growth, whereas the predator continued to grow, indicating active mycoparasitism to have occurred. Caffeine enhanced mycoparasitism up to 1.7-fold. Caffeine thus functions in a double-track manner against fungal pathogens: first by direct suppression of growth and development, and second by assisting their natural enemy. These observations suggest that caffeine is a powerful weapon in the arms race between plants and pathogens by fostering enemy''s enemy, and we propose the idea of "caffeine fostering" as the third role of caffeine.  相似文献   
44.
The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.  相似文献   
45.
Tocopheryl succinate (Tsuc) is a succinic acid ester of the well-known antioxidant α-tocopherol (T). Tsuc exhibits various biological activities, including tumor growth suppression via activation of cell signaling and prevention of lipid accumulation in mouse adipocyte 3T3-L1 cells. The latter findings suggest that Tsuc may be a drug candidate for the treatment of obesity. However, Tsuc was found to induce apoptosis of normal cells (in addition to cancer cells), demonstrating the need to reduce the cytotoxicity of Tsuc without losing the suppression effect on lipid accumulation. Based on our previous findings, we focused on the ester structure of Tsuc for controlling cytotoxicity. Herein, we examined the cytotoxicity and lipid accumulation suppression effect of various T ester derivatives. We found that the terminal carboxylic group is necessary for suppression of lipid accumulation. We synthesized tocopheryl glutarate (Tglu) and tocopheryl adipate (Tadi) by elongation of carbon atoms 1 and 2 of the dicarboxylic moiety, respectively. Tglu and Tadi did not show any cytotoxicity, and both esters suppressed lipid accumulation, although their suppression activities were weaker than that of Tsuc. Tadi showed a more potent lipid accumulation inhibitory effect than Tglu. Although Tadi inhibited lipogenesis and promoted lipolysis, lipolysis was induced at lower concentrations than inhibition of lipogenesis, suggesting that Tadi mainly affects lipolysis. Taken together, we succeeded in the reduction of cytotoxicity, without loss of the suppression effect on lipid accumulation, by elongation of the dicarboxylic moiety of Tsuc. Tadi may be a promising candidate as an anti-obesity drug.  相似文献   
46.
The crystal structure of an active site mutant of pro-Tk-subtilisin (pro-S324A) from the hyperthermophilic archaeon Thermococcus kodakaraensis was determined at 2.3 A resolution. The overall structure of this protein is similar to those of bacterial subtilisin-propeptide complexes, except that the peptide bond linking the propeptide and mature domain contacts with the active site, and the mature domain contains six Ca2+ binding sites. The Ca-1 site is conserved in bacterial subtilisins but is formed prior to autoprocessing, unlike the corresponding sites of bacterial subtilisins. All other Ca2+-binding sites are unique in the pro-S324A structure and are located at the surface loops. Four of them apparently contribute to the stability of the central alphabetaalpha substructure of the mature domain. The CD spectra, 1-anilino-8-naphthalenesulfonic acid fluorescence spectra, and sensitivities to chymotryptic digestion of this protein indicate that the conformation of pro-S324A is changed from an unstable molten globule-like structure to a stable native one upon Ca2+ binding. Another active site mutant, pro-S324C, was shown to be autoprocessed to form a propeptide-mature domain complex in the presence of Ca2+. The CD spectra of this protein indicate that the structure of pro-S324C is changed upon Ca2+ binding like pro-S324A but is not seriously changed upon subsequent autoprocessing. These results suggest that the maturation process of Tk-subtilisin is different from that of bacterial subtilisins in terms of the requirement of Ca2+ for folding of the mature domain and completion of the folding process prior to autoprocessing.  相似文献   
47.
Using the information from the genome projects, recent comparative studies of thermostable proteins have revealed a certain trend of amino acid composition in which polar residues are scarce and charged residues are rich on the protein surface. To clarify experimentally the effect of the amino acid composition of surface residues on the thermostability of Escherichia coli Ribonuclease HI (RNase HI), we constructed six variants in which five to eleven polar residues were replaced by charged residues (5C, 7Ca, 7Cb, 9Ca, 9Cb and 11C). The thermal denaturation experiments indicated that all of the variant proteins are 3.2-10.1 degrees C in Tm less stable than the wild proteins. The crystal structures of resultant protein variants 7Ca, 7Cb, 9Ca and 11C closely resemble that of E. coli RNase HI in their global fold, and several different hydrogen bonding and ion-pair interactions are formed by the mutations. Comparison of the crystal structures of these variant proteins with that of E. coli RNase HI reveals that thermal destabilization is apparently related to electrostatic repulsion of the charged residues with neighbours. This result suggests that charged residues of natural thermostable proteins are strictly posted on the surface with optimal interactions and without repulsive interactions.  相似文献   
48.
The Wave Bioreactor is widely used in cell culture due to the benefits of disposable technology and ease of use. A novel cellbag was developed featuring a frit sparger to increase the system's oxygen transfer. The purpose of this work was to evaluate the sparged cellbag for yeast cultivation. Oxygen mass transfer studies were conducted in simulated culture medium and the sparged system's maximum oxygen mass transfer coefficient (kLa) was 38 h(-1). These measurements revealed that the sparger was ineffective in increasing the oxygen transfer capacity. Cultures of Saccharomyces cerevisiae were successfully grown in oxygen-blended sparged and oxygen-blended standard cellbags. Under steady state conditions for both cellbag designs, kLa values as high as 60 h(-1) were obtained with no difference in growth characteristics. This is the first report of a successful cultivation of a microbe in a Wave Bioreactor comparing conventional seed expansion in shake flasks and stirred tank bioreactors.  相似文献   
49.
50.
A method was developed for protein localization in Mycoplasma pneumoniae by immunofluorescence microscopy. The P1 adhesin protein was revealed to be located at least at one cell pole in all adhesive cells, as has been observed by immunoelectron microscopy. Cell images were classified according to P1 localization and assigned by DNA content. Cells with a single P1 focus at one cell pole had a lower DNA content than cells with two foci, at least one of which was positioned at a cell pole. Those with one focus at each cell pole had the highest DNA content, suggesting that the nascent attachment organelle is formed next to the old one and migrates to the opposite cell pole before cell division. Double staining revealed that the accessory proteins for cytadherence-HMW1, HMW3, P30, P90, P40, and P65-colocalized with the P1 adhesin in all cells. The localization of cytadherence proteins was also examined in cytadherence-deficient mutant cells with a branched morphology. In M5 mutant cells, which lack the P90 and P40 proteins, HMW1, HMW3, P1, and P30 were focused at the cell poles of short branches, and P65 showed no signal. In M7 mutant cells, which produce a truncated P30 protein, HMW1, HMW3, P1, P90, and P40 were focused, and P65 showed no signal. In M6 mutant cells, which express no HMW1 and a truncated P30 protein, the P1 adhesin was distributed throughout the entire cell body, and no signal was detected for the other proteins. These results suggest that the cytadherence proteins are sequentially assembled to the attachment organelle with HMW1 first, HMW3, P1, P30, P90, and P40 next, and P65 last.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号