首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   16篇
  327篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   15篇
  2014年   8篇
  2013年   27篇
  2012年   21篇
  2011年   19篇
  2010年   8篇
  2009年   11篇
  2008年   16篇
  2007年   21篇
  2006年   21篇
  2005年   19篇
  2004年   16篇
  2003年   20篇
  2002年   19篇
  2001年   2篇
  1999年   2篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1970年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
81.
82.
Mucin, a major component of mucus, is a highly O-glycosylated, high-molecular-mass glycoprotein extensively involved in the physiology of gastrointestinal mucosa. To detect and characterize mucins derived from site-specific mucous cells, we developed a monoclonal antibody, designated PGM34, by immunizing a mouse with purified pig gastric mucin. The reactivity of PGM34 with mucin was inhibited by periodate treatment of the mucin, but not by trypsin digestion. This suggests that PGM34 recognizes the carbohydrate portion of mucin. To determine the epitope, oligosaccharide-alditols obtained from pig gastric mucin were fractionated by successive gel-filtration, ion-exchange, and normal-phase HPLC, and tested for reactivity with PGM34. Two purified oligosaccharide-alditols that reacted with PGM34 were obtained. Their structures were determined by NMR spectroscopy as Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta1-6(Fucalpha1-2Galbeta1-3)GalNAc-ol and Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta1-6(Galbeta1-3)GalNAc-ol. None of the defucosylated or desulfated forms of these oligosaccharides reacted with PGM34. Thus, the epitope of PGM34 was determined as the Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta- sequence. Immunohistochemical examination of rat gastrointestinal tract showed that PGM34 stained surface mucous cells close to the generative cell zone in the gastric fundus and goblet cells in the small intestine, but only slightly stained antral mucous cells in the stomach. These data, taken together, show that PGM34 is a very useful tool for elucidating the role of mucins with characteristic sulfated oligosaccharides.  相似文献   
83.
Slc1a5 (ASCT2) encodes a small neutral amino-acid exchanger and is the most well-studied glutamine transporter in cancer cells. To investigate the role of Slc1a5 in osteoclastogenesis, we developed Slc1a5-deficient mice by using a conventional gene-targeting approach. The Slc1a5−/− mice showed no obvious abnormalities in growth. Glutamine uptake was assessed in Slc1a5+/+ and Slc1a5−/− bone marrow cells stimulated with RANKL. The rate of glutamine uptake in Slc1a5−/− bone marrow cells was reduced to 70% of that of cells from Slc1a5+/+ bone marrow. To confirm the involvement of Slc1a5 in osteoclast formation, bone marrow cells derived from Slc1a5+/+ or Slc1a5−/− mice were stimulated with RANKL and macrophage colony-stimulating factor and stained with tartrate-resistant acid phosphatase. The bone resorption activity and actin ring formation of stimulated cells were measured. The formation of multinucleated osteoclasts in bone marrow cells isolated from Slc1a5−/− mice was severely impaired compared with those from Slc1a5+/+ mice. RANKL-induced expression of ERK, NFκB, p70S6K, and NFATc1 was suppressed in Slc1a5−/− osteoclasts. These results show that Slc1a5 plays an important role in osteoclast formation.

Osteoclasts are giant multinucleated cells of hematopoietic origin that are responsible for bone resorption. The differentiation of osteoclasts can be induced by treating bone marrow macrophages with RANKL.2 After stimulation, bone marrow macrophages mature and then fuse to become multinucleated osteoclasts. The processes of osteoclastogenesis and bone resorption are known to be energy-demanding,8 but little is known about the amino acid requirements of osteoclasts. In this study, we investigated the role of glutamine in osteoclastogenesis. Glutamine was selected for this work because it provides an excellent example of amino acid metabolism.Although glutamine acts as an essential amino acid in some specific physiologic situations, it is classified as a nonessential amino acid.5 The need for the biosynthesis and metabolism of amino acids is significantly increased in cells with high rates of proliferation, such as functionally active cells and cancer cells. The activity of amino acid synthetases such as glutamine synthetase is increased in these cells. In addition, glutamine transporters on the plasma membrane are important, because they mediate glutamine uptake to meet the intracellular glutamine demand. The transporter Slc1a5, also known as ASCT2, is particularly important for glutaminolysis and mTOR signaling.14,16Glutamine concentrations in tissue and blood are regulated by the activities of glutamine synthetase and glutaminase. ­Endogenous synthesis cannot meet the cell’s demands for glutamine in conditions including cancer, infections, and intense physical exercise. Glutamine is released into the blood from the lungs, adipocytes, and skeletal muscles and is transported into the cytoplasm via glutamine acid transporter molecules on the cell membrane. Glutamine is required for the growth of cancer cells; upregulation of the expression of the proteins involved in glutamine transport has been observed in tumor cells.4 Slc1a5 (ASCT2) is a small neutral amino acid exchanger that is overexpressed in many cancers and is the most well-described glutamine transporter in cancer cells.9 However, previous studies1,10,22,23 have reported that silencing, deletion, and amino-acid analog substitution of Slc1a5 in cancer cells generated different results for mTORC1 signaling, proliferation, and cell migration.1,3,4,10,22,23 Additional work3,4 has shown that Slc1a5 is indispensable for tumor growth and mTORC1 signaling. Slc1a5 is important in accumulating nonessential amino acids to quickly restore amino acid composition during imbalanced amino acid usage,4 whereas Slc38a1 (SNAT1) and Slc38a2 (SNAT2) mediate the net import of glutamine.In bone homeostasis, glutamine is a critical regulator of energy for protein and nucleic acid synthesis via the tricarboxylic acid cycle. Active glutamine metabolism stimulates the proliferation and differentiation of osteoblasts, chondrocytes, and osteoclasts. The enzyme glutaminase deaminates glutamine to form glutamate. Glutaminase deficiency in osteoblasts and chondrocytes leads to reduced osteoblast formation and decreased bone mass, resulting in potentially dangerous conditions, such as osteoporosis.24 In osteoclasts, glutamine is an important source of fuel for protein and nucleic acid biosynthesis. Therefore, Slc1a5 deficiency in mice may influence bone homeostasis, including osteoclastogenesis. We therefore created Slc1a5-deficient mice to investigate the contribution of Slc1a5 to the development and functional properties of osteoclasts.  相似文献   
84.
Etoposide is a chemotherapeutic agent that induces cell death by blocking topoisomerase II catalytic function. Although etoposide is effective in the treatment of cancer, it also causes the death of normal proliferating cells, including male germ cells. Administration of etoposide during the prepubertal phase causes diturbances in several testicular morphometric parameters and in Sertoli cells. Cytoprotection of the seminiferous epithelium is the only means of preserving potential male reproduction in prepubertal cancer patients. Carnitine, an amino acid naturally present in normal cells, is a promising cryoprotectant as it is concentrated in the epididymis and promotes sperm maturation. We have therefore investigated whether carnitine protects rat testes against etoposide and, thus, improves fertility in adulthood. Our results suggest that carnitine partially protects the testis against damage caused by etoposide, although the mechanism by which it happens remains unknown. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
85.
Akiyama Y  Kanehara K  Ito K 《The EMBO journal》2004,23(22):4434-4442
Escherichia coli RseP (formerly YaeL) is believed to function as a 'regulated intramembrane proteolysis' (RIP) protease that introduces the second cleavage into anti-sigma(E) protein RseA at a position within or close to the transmembrane segment. However, neither its enzymatic activity nor the substrate cleavage position has been established. Here, we show that RseP-dependent cleavage indeed occurs within predicted transmembrane sequences of membrane proteins in vivo. Moreover, RseP catalyzed the same specificity proteolysis in an in vitro reaction system using purified components. Our in vivo and in vitro results show that RseP can cleave transmembrane sequences of some model membrane proteins that are unrelated to RseA, provided that the transmembrane region contains residues of low helical propensity. These results show that RseP has potential ability to cut a broad range of membrane protein sequences. Intriguingly, it is nevertheless recruited to the sigma(E) stress-response cascade as a specific player of RIP.  相似文献   
86.
The mannose-binding lectin (MBL), a circulating pattern recognition molecule, recognizes a wide range of infectious agents with resultant initiation of the complement cascade in an Ab-independent manner. MBL recognizes infectious non-self and altered self in the guise of apoptotic and necrotic cells. In this study, we demonstrate that mice lacking MBL, and hence are devoid of MBL-dependent lectin pathway activation but have fully active alternative and classical complement pathways, are protected from cardiac reperfusion injury with resultant preservation of cardiac function. Significantly, mice that lack a major component of the classical complement pathway initiation complex (C1q) but have an intact MBL complement pathway, are not protected from injury. These results suggest that the MBL-dependent pathway of complement activation is a key regulator of myocardial reperfusion ischemic injury. MBL is an example of a pattern recognition molecule that plays a dual role in modifying inflammatory responses to sterile and infectious injury.  相似文献   
87.
In the Pacific common minke whale (Balaenoptera acutorostrata ), a new variant of Brucella has been detected using the polymerase chain reaction. Detailed analysis of the porin protein genes, omp2a and omp2b from the whale Brucella showed that these two genes have some motifs in common with Atlantic marine strains in the 5'-terminal one-third region. On the other hand, the nucleotide sequences in the 3'-terminal two-thirds region of the two genes were almost identical to the respective genes of terrestrial strains. Thus, Pacific whale Brucella omp2 genes are chimeras between marine and terrestrial strains.  相似文献   
88.
Gene set analysis aims to identify predefined sets of functionally related genes that are differentially expressed between two conditions. Although gene set analysis has been very successful, by incorporating biological knowledge about the gene sets and enhancing statistical power over gene-by-gene analyses, it does not take into account the correlation (association) structure among the genes. In this work, we present CoGA (Co-expression Graph Analyzer), an R package for the identification of groups of differentially associated genes between two phenotypes. The analysis is based on concepts of Information Theory applied to the spectral distributions of the gene co-expression graphs, such as the spectral entropy to measure the randomness of a graph structure and the Jensen-Shannon divergence to discriminate classes of graphs. The package also includes common measures to compare gene co-expression networks in terms of their structural properties, such as centrality, degree distribution, shortest path length, and clustering coefficient. Besides the structural analyses, CoGA also includes graphical interfaces for visual inspection of the networks, ranking of genes according to their “importance” in the network, and the standard differential expression analysis. We show by both simulation experiments and analyses of real data that the statistical tests performed by CoGA indeed control the rate of false positives and is able to identify differentially co-expressed genes that other methods failed.  相似文献   
89.
Abstract

Photolysis of a solution of a pyrimidine (i. e., 1, 3-dimethylthymine and 1, 3-dimethyluracil) in p-xylene in the presence of trifluoroacetic acid afforded mainly the 5, 6-dihydropyrimidine derivative together with the 5-p-methylbenzylated product and the 6-isomer as well. It is suggested that the first two products result from the C6-protonated pyrimidine electron adduct (III), while the 6-isomer is derived from the O4-protonated isomer (II).  相似文献   
90.
High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号