首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   813篇
  免费   33篇
  国内免费   3篇
  849篇
  2022年   8篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   11篇
  2017年   12篇
  2016年   16篇
  2015年   30篇
  2014年   32篇
  2013年   54篇
  2012年   60篇
  2011年   52篇
  2010年   35篇
  2009年   31篇
  2008年   59篇
  2007年   54篇
  2006年   52篇
  2005年   56篇
  2004年   54篇
  2003年   58篇
  2002年   50篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   9篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   9篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1962年   1篇
排序方式: 共有849条查询结果,搜索用时 15 毫秒
101.
A thermophilic bacterium, which we designated as Geobacillus thermoleovorans 47b was isolated from a hot spring in Beppu, Oita Prefecture, Japan, on the basis of its ability to grow on bitter peptides as a sole carbon and nitrogen source. The cell-free extract from G. thermoleovorans 47b contained leucine aminopeptidase (LAP; EC 3.4.11.10), which was purified 164-fold to homogeneity in seven steps, using ammonium sulfate fractionation followed by the column chromatography using DEAE-Toyopearl, hydroxyapatite, MonoQ and Superdex 200 PC gel filtration, followed again by MonoQ and hydroxyapatite. The enzyme was a single polypeptide with a molecular mass of 42,977.2 Da, as determined by matrix-assisted laser desorption ionization and time-of-flight mass spectrometry, and was found to be thermostable at 90°C for up to 1 h. Its optimal pH and temperature were observed to be 7.6–7.8 and 60°C, respectively, and it had high activity towards the substrates Leu-p-nitroanilide (p-NA)(100%), Arg-p-NA (56.3%) and LeuGlyGly (486%). The Km and Vmax values for Leu-p-NA and LeuGlyGly were 0.658 mM and 25.0 mM and 236.2 mol min–1 mg–1 protein and 1,149 mol min–1 mg–1 protein, respectively. The turnover rate (kcat) and catalytic efficiency (kcat/ Km) for Leu-p-NA and LeuGlyGly were 10,179 s–1 and 49,543 s–1 and 15,470 mM–1 s–1 and 1981.7 mM–1 s–1, respectively. The enzyme was strongly inhibited by EDTA, 1,10-phenanthroline, dithiothreitol, -mercaptoethanol, iodoacetate and bestatin; and its apoenzyme was found to be reactivated by Co2+ .  相似文献   
102.
Glutaminase from Stenotrophomonas maltophilia NYW-81 was purified to homogeneity with a final specific activity of 325 U/mg. The molecular mass of the native enzyme was estimated to be 41 kDa by gel filtration. A subunit molecular mass of 36 kDa was measured with SDS-PAGE, thus indicating that the native enzyme is a monomer. The N-terminal amino acid sequence of the enzyme was determined to be KEAETQQKLANVVILATGGTIA. Besides l-glutamine, which was hydrolyzed with the highest specific activity (100%), l-asparagine (74%), d-glutamine (75%), and d-asparagine (67%) were also hydrolyzed. The pH and temperature optima were 9.0 and approximately 60°C, respectively. The enzyme was most stable at pH 8.0 and was highly stable (relative activities from 60 to 80%) over a wide pH range (5.0–10.0). About 70 and 50% of enzyme activity was retained even after treatment at 60 and 70°C, respectively, for 10 min. The enzyme showed high activity (86% of the original activity) in the presence of 16% NaCl. These results indicate that this enzyme has a higher salt tolerance and thermal stability than bacterial glutaminases that have been reported so far. In a model reaction of Japanese soy sauce fermentation, glutaminase from S. maltophilia exhibited high ability in the production of glutamic acid compared with glutaminases from Aspergillus oryzae, Escherichia coli, Pseudomonas citronellolis, and Micrococcus luteus, indicating that this enzyme is suitable for application in Japanese soy sauce fermentation.  相似文献   
103.
Clostridium perfringens type A isolates carrying an enterotoxin (cpe) gene are an important cause of human gastrointestinal diseases, including food poisoning, antibiotic-associated diarrhoea (AAD) and sporadic diarrhoea (SD). Using polymerase chain reaction (PCR), the current study determined that the cpb2 gene encoding the recently discovered beta2 toxin is present in <15% of food poisoning isolates, which typically carry a chromosomal cpe gene. However, >75% of AAD/SD isolates, which usually carry a plasmid cpe gene, tested cpb2(+) by PCR. Western blot analysis demonstrated that >97% of those cpb2(+)/cpe(+) AAD/SD isolates can produce CPB2. Additional PCR analyses, sequencing studies and pulsed field gel electrophoresis experiments determined that AAD/SD isolates carry cpb2 and cpe on the same plasmid when IS1151 sequences are present downstream of cpe, but cpb2 and cpe are located on different plasmids in AAD/SD isolates where IS1470-like sequences are present downstream of cpe. Those analyses also demonstrated that two different CPB2 variants (named CPB2h1 or CPB2h2) can be produced by AAD/SD isolates, dependent on whether IS1470-like or IS1151 sequences are present downstream of their cpe gene. CPB2h1 is approximately 10-fold more cytotoxic for CaCo-2 cells than is CPB2h2. Collectively, these results suggest that CPB2 could be an accessory toxin in C. perfringens enterotoxin (CPE)-associated AAD/SD.  相似文献   
104.
Bile acids have been suggested to be involved in biliary carcinogenesis, although the underlying mechanisms are yet to be established. The aim of this study was to investigate the carcinogenic effect of bile acids in the biliary tract in relation to oxidative stress. Immortalized mouse cholangiocytes were incubated with various bile acids, followed by measurement of reactive oxygen species (ROS) and the glutathione (GSH) level. As a marker of oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG) expression in cholangiocytes was analyzed by flow cytometry. Then the expression of oxidative DNA repair enzymes in cholangiocytes was examined by real-time PCR. In addition, the long-term effect of bile acid-induced oxidative DNA damage on cholangiocytes was investigated using a mouse oligo DNA microarray. It was found that glycochenodeoxycholate (GCDC) induced the generation of ROS and the depletion of GSH. In contrast, no marked changes were induced by the other bile acids. The percentage of 8-OHdG-positive cells was also increased by GCDC, but the expression of oxidative DNA repair enzymes was not up-regulated. DNA microarray analysis showed marked changes of various genes associated with carcinogenesis (genes related to cell proliferation, angiogenesis, invasion, and metastasis). In conclusion, the long-term effect of oxidative DNA damage due to GCDC may promote carcinogenesis in the biliary tract. Furthermore, accumulation of 8-OHdG due to GCDC might contribute to the dysfunction of oxidative DNA repair enzymes.  相似文献   
105.
A microtubule-beta-cyclodextrin conjugate was prepared on a kinesin-adsorbed glass surface by chemical and biochemical means. Fluorescence microscope observation and a motility assay indicated that the conjugate simultaneously expressed an inherent motor function and an inclusion property.  相似文献   
106.
107.
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0°C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24°C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43°C nor phage propagation at an even lower temperature, 30°C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15°C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.  相似文献   
108.
109.
Although red blood cells account for about 30% of total PAF-AH activity found in the blood, the physiological function of this enzyme is unknown. To understand the role and regulatory mechanism of this enzyme, we purified it from easily obtainable pig red blood cells. PAF-AH activity was mainly found in the soluble fraction of the red blood cells. Two peaks of enzyme activity appeared with increasing concentration of imidazole on column chromatography on nickel-nitroacetic acid (Ni-NTA) resin. We called these peaks of small and large enzyme activities fractions X and Y, respectively, and then further purified the enzymes by sequential chromatofocusing on Mono P and gel filtration on TSK G-3000. In the final preparation from fraction Y, two proteins bands corresponding to 26 kDa and 28 kDa were related to enzyme activity. Determination of the partial amino acid sequences of the proteins of 26 kDa and 28 kDa revealed that these proteins were identical to alpha(1) and alpha(2), respectively, both of which are catalytic subunits of Type I intracellular PAF-AH. On Western analysis, the 26 kDa and 28 kDa protein bands cross-reacted with specific monoclonal antibodies to alpha(1) and alpha(2), respectively. Since the apparent molecular weight of the natural enzyme was estimated to be about 60 kDa, the enzyme activity in fraction Y was thought to be that of a heterodimer consisting of alpha(1) and alpha(2). On the other hand, the enzyme activity in fraction X was thought to be that of a homodimer consisting of alpha(2). Other blood cells such as polymorphonuclear leukocytes and platelets only contained the alpha(2)/alpha(2) homodimer. It has been reported that the alpha(1)/alpha(2) heterodimer is poorly expressed in adult animals except for in the spermatogonium. Taken altogether, these results suggest that high expression of the alpha(1)/alpha(2) heterodimer is important for the physiological function of mature red blood cells.  相似文献   
110.
Singlet oxygen is a causal factor in light-induced skin photoaging and the cytotoxic process of tumor cells in photodynamic chemotherapy. To develop a better understanding of the functional consequences of protein modification by singlet oxygen, the effects of naphthalene endoperoxide on lysosomal protease, cathepsin, were examined. When the soluble fraction of normal human fetal skin fibroblast cells was treated with the endoperoxide, the activities of cysteine proteases, cathepsins B and L/S, were inhibited, but that of aspartate protease, cathepsin D/E, was not. The reduction of the endoperoxide-treated soluble fractions by treatment with dithiothreitol barely recovered the activities. Cathepsin B, purified from normal human liver, exhibited similar profiles to that in cytosol. These data suggest that singlet oxygen oxidatively modifies an amino acid residue essential for catalysis and consequently results in the irreversible inactivation of cysteine protease-type cathepsin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号