首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1219篇
  免费   60篇
  国内免费   3篇
  2022年   9篇
  2021年   11篇
  2020年   6篇
  2019年   7篇
  2018年   15篇
  2017年   14篇
  2016年   23篇
  2015年   41篇
  2014年   39篇
  2013年   80篇
  2012年   76篇
  2011年   71篇
  2010年   39篇
  2009年   45篇
  2008年   74篇
  2007年   67篇
  2006年   67篇
  2005年   76篇
  2004年   81篇
  2003年   81篇
  2002年   65篇
  2001年   21篇
  2000年   32篇
  1999年   25篇
  1998年   11篇
  1997年   11篇
  1996年   5篇
  1995年   9篇
  1994年   13篇
  1993年   7篇
  1992年   13篇
  1991年   14篇
  1990年   14篇
  1989年   15篇
  1988年   11篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1971年   2篇
排序方式: 共有1282条查询结果,搜索用时 15 毫秒
51.
Cell-free extracts of Brevibacterium thiogenitalis culture grown in the presence of copper catalyzed the oxidation of NADH2 and succinate through an electron transport chain which contained menaquinones and cytochromes a, b and c. On the other hand, extracts of cells grown in the absence of copper lacked cytochromes a and c, and contained cytochrome d.

These findings, as well as the results obtained in inhibition experiments, suggest that in copper-deficient cells the major part of NADH2 was oxidized via a bypass in which the electrons were transferred directly from flavoprotein or cytochrome b to molecular oxygen.

Electron transport from these substrates to molecular oxygen resulted in ATP synthesis. The average P/O ratios in extracts of the copper-sufficient cells were 0.33 for generated NADH2, 0.20 for added NADH2, and 0.34 for succinate, and those in extracts of the copper-deficient cells were 0.15, 0.13 and 0.21, respectively. In addition, a linear relationship was found between the yield of L-glutamate from acetate and the P/Ο ratios with both NADH2 and succinate as substrates.

From these results, it is reasonable to consider that the poor yield of L-glutamate from acetate in copper-deficient cells was due to a reduction in energy supply, which was caused by the low efficiency of oxidative phosphorylation.  相似文献   
52.
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific.  相似文献   
53.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   
54.
PurposeTo apply M-CHARTS for quantitative measurements of metamorphopsia in eyes with acute branch retinal vein occlusion (BRVO) and to elucidate the pathomorphology that causes metamorphopsia.MethodsThis prospective study consisted of 42 consecutive patients (42 eyes) with acute BRVO. Both at baseline and one month after treatment with ranibizumab, metamorphopsia was measured with M-CHARTS, and the retinal morphological changes were examined with optical coherence tomography.ResultsAt baseline, metamorphopsia was detected in the vertical and/or horizontal directions in 29 (69.0%) eyes; the mean vertical and horizontal scores were 0.59 ± 0.57 and 0.52 ± 0.67, respectively. The maximum inner retinal thickness showed no association with the M-CHARTS score, but the M-CHARTS score was correlated with the total foveal thickness (r = 0.43, p = 0.004), the height of serous retinal detachment (r = 0.31, p = 0.047), and the maximum outer retinal thickness (r = 0.36, p = 0.020). One month after treatment, both the inner and outer retinal thickness substantially decreased. However, metamorphopsia persisted in 26 (89.7%) of 29 eyes. The posttreatment M-CHARTS score was not correlated with any posttreatment morphological parameters. However, the posttreatment M-CHARTS score was weakly correlated with the baseline total foveal thickness (r = 0.35. p = 0.024) and closely correlated with the baseline M-CHARTS score (r = 0.78, p < 0.001).ConclusionsMetamorphopsia associated with acute BRVO was quantified using M-CHARTS. Initial microstructural changes in the outer retina from acute BRVO may primarily account for the metamorphopsia.  相似文献   
55.

Background

The association of complement with the progression of acute T cell mediated rejection (ATCMR) is not well understood. We investigated the production of complement components and the expression of complement regulatory proteins (Cregs) in acute T-cell mediated rejection using rat and human renal allografts.

Methods

We prepared rat allograft and syngeneic graft models of renal transplantation. The expression of Complement components and Cregs was assessed in the rat grafts using quantitative real-time PCR (qRT-PCR) and immunofluorescent staining. We also administered anti-Crry and anti-CD59 antibodies to the rat allograft model. Further, we assessed the relationship between the expression of membrane cofactor protein (MCP) by immunohistochemical staining in human renal grafts and their clinical course.

Results

qRT-PCR results showed that the expression of Cregs, CD59 and rodent-specific complement regulator complement receptor 1-related gene/protein-y (Crry), was diminished in the rat allograft model especially on day 5 after transplantation in comparison with the syngeneic model. In contrast, the expression of complement components and receptors: C3, C3a receptor, C5a receptor, Factor B, C9, C1q, was increased, but not the expression of C4 and C5, indicating a possible activation of the alternative pathway. When anti-Crry and anti-CD59 mAbs were administered to the allograft, the survival period for each group was shortened. In the human ATCMR cases, the group with higher MCP expression in the grafts showed improved serum creatinine levels after the ATCMR treatment as well as a better 5-year graft survival rate.

Conclusions

We conclude that the expression of Cregs in allografts is connected with ATCMR. Our results suggest that controlling complement activation in renal grafts can be a new strategy for the treatment of ATCMR.  相似文献   
56.
57.
1,3-Butadiene is on the list of Substances Requiring Priority Action published by the Central Environmental Council of Japan in 1996. Emission of 1,3-butadiene has been controlled by a voluntary reduction program since 1997. Although the industrial emission of 1,3-butadiene in Japan has decreased in recent years, primarily due to a voluntary industrial emissions reduction program, the risks of exposure to it remain largely unknown. We assessed the risks and consequences of exposure to 1,3-butadiene on human health. A remarkable advantage of our risk assessment approach is the detailed assessment of exposure. Previously, we developed two different models that can be applied for the assessment of exposure: the first, the AIST-ADMER model estimates regional concentration distributions, whereas the second, the METI-LIS model estimates concentration distributions in the vicinity of factories. Both models were used for the assessment of exposure to 1,3-butadiene. Using exposure concentration and carcinogenic potency determined and reported by Environment Canada and Health Canada, we evaluated the excess lifetime cancer risk for persons exposed to 1,3-butadiene over the course of a lifetime. The results suggested that the majority of the population in Japan has an excess lifetime cancer risk of less than 10(-5), whereas a small number of people living close to industrial sources had a risk of greater than 10(-5). The results of the present assessment also showed that 1,3-butadiene in the general environment originates primarily from automobile emissions, such that a countermeasure of reducing emissions from cars is expected to be effective at reducing the total cancer risk among Japanese. On the other hand, individual risks among a population living in the vicinity of certain industrial sources were found to be significantly higher than those of the population living elsewhere, such that a reduction in emissions from a small number of specific industrial sources should be realized in order to reduce the high level of individual risk. Based on the results of our assessment, the Industrial Structure Council of the Ministry of Economy, Trade and Industry (METI) in Japan decided to announce that the voluntary reduction program had been successful, and that emissions reductions should no longer be targeted across all industries in general, but instead that such reductions should be carried out in a small number of selected factories that emit excessively large amounts of emissions.  相似文献   
58.
Craniofacial development involves cranial neural crest (CNC) and mesoderm-derived cells. TGF-beta signaling plays a critical role in instructing CNC cells to form the craniofacial skeleton. However, it is not known how TGF-beta signaling regulates the fate of mesoderm-derived cells during craniofacial development. In this study, we show that occipital somites contribute to the caudal region of mammalian skull development. Conditional inactivation of Tgfbr2 in mesoderm-derived cells results in defects of the supraoccipital bone with meningoencephalocele and discontinuity of the neural arch of the C1 vertebra. At the cellular level, loss of TGF-beta signaling causes decreased chondrocyte proliferation and premature differentiation of cartilage to bone. Expression of Msx2, a critical factor in the formation of the dorsoventral axis, is diminished in the Tgfbr2 mutant. Significantly, overexpression of Msx2 in Myf5-Cre;Tgfbr2flox/flox mice partially rescues supraoccipital bone development. These results suggest that the TGF-beta/Msx2 signaling cascade is critical for development of the caudal region of the skull.  相似文献   
59.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   
60.
Thrombomodulin is a clock-controlled gene in vascular endothelial cells   总被引:1,自引:0,他引:1  
Cardiovascular diseases are closely related to circadian rhythm, which is under the control of an internal biological clock mechanism. Although a biological clock exists not only in the hypothalamus but also in each peripheral tissue, the biological relevance of the peripheral clock remains to be elucidated. In this study we searched for clock-controlled genes in vascular endothelial cells using microarray technology. The expression of a total of 229 genes was up-regulated by CLOCK/BMAL2. Among the genes that we identified, we examined the thrombomodulin (TM) gene further, because TM is an integral membrane glycoprotein that is expressed primarily in vascular endothelial cells and plays a major role in the regulation of intravascular coagulation. TM mRNA and protein expression showed a clear circadian oscillation in the mouse lung and heart. Reporter analyses, gel shift assays, and chromatin immunoprecipitation analyses using the TM promoter revealed that a heterodimer of CLOCK and BMAL2 binds directly to the E-box of the TM promoter, resulting in TM promoter transactivation. Indeed, the oscillation of TM gene expression was abolished in clock mutant mice, suggesting that TM expression is regulated by the clock gene in vivo. Finally, the phase of circadian oscillation of TM mRNA expression was altered by temporal feeding restriction, suggesting TM gene expression is regulated by the peripheral clock system. In conclusion, these data suggest that the peripheral clock in vascular endothelial cells regulates TM gene expression and that the oscillation of TM expression may contribute to the circadian variation of cardiovascular events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号