首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   21篇
  2024年   1篇
  2023年   2篇
  2022年   16篇
  2021年   18篇
  2020年   4篇
  2019年   2篇
  2018年   8篇
  2017年   11篇
  2016年   18篇
  2015年   23篇
  2014年   27篇
  2013年   38篇
  2012年   41篇
  2011年   60篇
  2010年   14篇
  2009年   11篇
  2008年   19篇
  2007年   9篇
  2006年   12篇
  2005年   11篇
  2004年   9篇
  2003年   8篇
  2002年   14篇
  2001年   9篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   6篇
  1972年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
371.
372.
Expression and purification of SARS coronavirus proteins using SUMO-fusions   总被引:5,自引:0,他引:5  
Severe acute respiratory syndrome coronavirus (SARS-CoV) proteins belong to a large group of proteins that is difficult to express in traditional expression systems. The ability to express and purify SARS-CoV proteins in large quantities is critical for basic research and for development of pharmaceutical agents. The work reported here demonstrates: (1) fusion of SUMO (small ubiquitin-related modifier), a 100 amino acid polypeptide, to the N-termini of SARS-CoV proteins dramatically enhances expression in Escherichia coli cells and (2) 6x His-tagged SUMO-fusions facilitate rapid purification of the viral proteins on a large scale. We have exploited the natural chaperoning properties of SUMO to develop an expression system suitable for proteins that cannot be expressed by traditional methodologies. A unique feature of the system is the SUMO tag, which enhances expression, facilitates purification, and can be efficiently cleaved by a SUMO-specific protease to generate native protein with a desired N-terminus. We have purified various SARS-CoV proteins under either native or denaturing conditions. These purified proteins have been used to generate highly specific polyclonal antibodies. Our study suggests that the SUMO-fusion technology will be useful for enhancing expression and purification of the viral proteins for structural and functional studies as well as for therapeutic uses.  相似文献   
373.
14-3-3Sigma is a putative tumor suppressor gene involved in cell cycle regulation and apoptosis following DNA damage. 14-3-3Sigma loss of expression has been reported is several human cancers, including prostate adenocarcinoma and precursor lesions, and promoter hypermethylation has been proposed as the mechanism underlying gene silencing. Here, we investigate the frequency and extent of 14-3-3sigma promoter methylation in benign and cancerous prostate tissues. We examined tumor tissue from 121 patients with prostate carcinoma (PCa), 39 paired high-grade prostatic intraepithelial neoplasias (HGPIN), 29 patients with benign prostate hyperplasia (BPH), as well as four prostate cancer cell lines using quantitative methylation-specific PCR (QMSP). The percentage of methylated alleles (PMA) was calculated and correlated with clinical and pathological parameters. RT-PCR was performed in the cell lines to assess 14-3-3sigma mRNA expression. PCa, HGPIN, BPH, and cancer cell lines showed ubiquitous 14-3-3sigma promoter methylation. However, the PMA of HGPIN was significantly lower than that of PCa or BPH (P < 0.0001), while PCa and BPH did not significantly differ. The PMA did not correlate with any clinicopathological parameter. All prostate cancer cell lines expressed 14-3-3sigmamRNA. 14-3-3Sigma promoter methylation is a frequent event in prostate tissues and cancer cell lines. Furthermore, there is a progressive accumulation of neoplastic cells with 14-3-3sigma methylated alleles from HGPIN to PCa, suggesting a role for this epigenetic event in prostate carcinogenesis. However, other mechanisms besides promoter methylation might be required for effective 14-3-3sigma downregulation.  相似文献   
374.
A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The "in vitro-assembled" wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD5), and the "corrected" Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis.  相似文献   
375.
A procedure for isolation of cyclic AMP (cAMP) by thin-layer chromatography on silica gel is described. One-dimensional ascending chromatograms were developed using [H(2)O/C(2)H(5)OH/NH(4)HCO(3) (30%:70%:0.2M)] as the mobile phase. This procedure separated [32P]cAMP from other radioactive metabolites of [32P]ATP in up to 19 samples on one sheet (20 x 10 cm) over 40-60 min at room temperature (21 degrees C). This simple and rapid isolation method provides a novel and convenient technique for the assay of adenylyl cyclase.  相似文献   
376.
Cyclic ADP-ribose (cADP-ribose) is a putative second messenger or modulator. However, the role of cADP-ribose in the downstream signals of the metabotropic glutamate receptors (mGluRs) is unclear. Here, we show that glutamate stimulates ADP-ribosyl cyclase activity in rat or mouse crude membranes of retina via group III mGluRs or in superior cervical ganglion via group I mGluRs. The retina of mGluR6-deficient mice showed no increase in the ADP-ribosyl cyclase level in response to glutamate. GTP enhanced the initial rate of basal and glutamate-stimulated cyclase activity. GTP-gamma-S also stimulated basal activity. To determine whether the coupling mode of mGluRs to ADP-ribosyl cyclase is a feature common to individual cloned mGluRs, we expressed each mGluR subtype in NG108-15 neuroblastoma x glioma hybrid cells. The glutamate-induced stimulation of the cyclase occurs preferentially in NG108-15 cells over-expressing mGluRs1, 3, 5, and 6. Cells expressing mGluR2 or mGluRs4 and 7 exhibit inhibition or no coupling, respectively. Glutamate-induced activation or inhibition of the cyclase activity was eliminated after pre-treatment with cholera or pertussis toxin, respectively. Thus, the subtype-specific coupling of mGluRs to ADP-ribosyl cyclase via G proteins suggests that some glutamate-evoked neuronal functions are mediated by cADP-ribose.  相似文献   
377.
Calcineurin mediates repression of plasma membrane Ca2+-ATPase-4 (PMCA4) expression in neurons, whereas c-Myb is known to repress PMCA1 expression in vascular smooth muscle cells (VSMC). Here, we describe a novel mouse VSMC line (MOVAS) in which 45Ca efflux rates decreased 50%, fura 2-AM-based intracellular Ca2+ concentrations ([Ca2+]i) increased twofold, and real-time RT-PCR and Western blot revealed a 40% decrease in PMCA4 expression levels from G0 to G1/S in the cell cycle, where PMCA4 constituted 20% of total PMCA protein. Although calcineurin activity increased fivefold as MOVAS progressed from G0 to G1/S, inhibition of this increase with either BAPTA or retroviral transduction with peptide inhibitors of calcineurin (CAIN), or its downstream target nuclear factor of activated T cells (NFAT) (VIVIT), had no effect on the repression of PMCA4 mRNA expression at G1/S. By contrast, Ca2+-independent activity of the calmodulin-dependent protein kinase-II (CaMK-II) increased eightfold as MOVAS progressed from G0 to G1/S, and treatment with an inhibitor of CaMK-II (KN-93) or transduction of a c-Myb-neutralizing antibody significantly alleviated the G1/S-associated repression of PMCA4. These data show that G1/S-specific PMCA4 repression in proliferating VSMC is brought about by c-Myb and CaMK-II and that calcineurin may regulate cell cycle-associated [Ca2+]i through alternate targets. calcineurin; c-Myb; plasma membrane Ca2+-ATPase-4; cell cycle  相似文献   
378.
To elucidate the effect of traumatic stress on the lateral habenular nucleus, we investigated the time course of the expression of c-Fos protein in this nucleus of the Japanese monkey (Macaca fuscata) after enucleation of one eye using c-Fos protein immunocytochemistry. c-Fos protein-like immunoreactive neurons were significantly increased; the increase started 1 h after the enucleation and remained high for 3-9 h in the lateral habenular nucleus on both sides. These results suggest that the prolonged expression of c-Fos protein occurred in the lateral habenular nucleus after traumatic stress through multiple transsynaptic activations.  相似文献   
379.
The simian virus 40 capsid is composed of 72 pentamers of VP1 protein. Although the capsid is known to dissociate to pentamers in vitro following simultaneous treatment with reducing and chelating agents, the functional roles of disulfide linkage and calcium ion-mediated interactions are not clear. To elucidate the roles of these interactions, we introduced amino acid substitutions in VP1 at cysteine residues and at residues involved in calcium binding. We expressed the mutant proteins in a baculovirus system and analyzed both their assembly into virus-like particles (VLPs) in insect cells and the disassembly of those VLPs in vitro. We found that disulfide linkages at both Cys-9 and Cys-104 conferred resistance to proteinase K digestion on VLPs, although neither linkage was essential for the formation of VLPs in insect cells. In particular, reduction of the disulfide linkage at Cys-9 was found to be critical for VLP dissociation to VP1 pentamers in the absence of calcium ions, indicating that disulfide linkage at Cys-9 prevents VLP dissociation, probably by increasing the stability of calcium ion binding. We found that amino acid substitutions at carboxy-terminal calcium ion binding sites (Glu-329, Glu-330, and Asp-345) resulted in the frequent formation of unusual tubular particles as well as VLPs in insect cells, indicating that these residues affect the accuracy of capsid assembly. In addition, unexpectedly, amino acid substitutions at any of the calcium ion binding sites tested, especially at Glu-157, resulted in increased stability of VLPs in the absence of calcium ions in vitro. These results suggest that appropriate affinities of calcium ion binding are responsible for both assembly and disassembly of the capsid.  相似文献   
380.
Emerging evidence supports an important role for caspases in neuronal death following ischemia-reperfusion injury. This study assessed whether cell specific caspases participate in neuronal degeneration and whether caspase inhibition provides neuroprotection following transient retinal ischemia. We utilized a model of transient global retinal ischemia. The spatial and temporal pattern of the active forms of caspase 1, 2 and 3 expression was determined in retinal neurons following ischemic injury. Double-labeling with cell-specific markers identified which cells were expressing different caspases. In separate experiments, animals received various caspase inhibitors before the induction of ischemia. Sixty minutes of ischemia resulted in a delayed, selective neuronal death of the inner retinal layers at 7 days. Expression of caspase 1 was not detected at any time point. Maximal expression of caspase 2 was found at 24 h primarily in the inner nuclear and ganglion cell layers of the retina and localized to ganglion and amacrine neurons. Caspase 3 also peaked at 24 h in both the inner nuclear and outer nuclear layers and was predominantly expressed in photoreceptor cells and to a lesser extent in amacrine neurons. The pan caspase inhibitor, Boc-aspartyl fmk, or an antisense oligonucleotide inhibitor of caspase 2 led to significant histopathologic and functional improvement (electroretinogram) at 7 days. No protection was found with the caspase 1 selective inhibitor, Y-vad fmk. These observations suggest that ischemia-reperfusion injury activates different caspases depending on the neuronal phenotype in the retina and caspase inhibition leads to both histologic preservation and functional improvement. Caspases 2 and 3 may act in parallel in amacrine neurons following ischemia-reperfusion. These results in the retina may shed light on differential caspase specificity in global cerebral ischemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号