首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   30篇
  2022年   2篇
  2021年   7篇
  2019年   1篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   12篇
  2014年   23篇
  2013年   36篇
  2012年   35篇
  2011年   28篇
  2010年   18篇
  2009年   22篇
  2008年   22篇
  2007年   35篇
  2006年   28篇
  2005年   31篇
  2004年   33篇
  2003年   31篇
  2002年   26篇
  2001年   1篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   8篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
51.
Class B scavenger receptor type I (SR-BI), a multiligand membrane protein, exists in various organs and cell types. In the testis, SR-BI is expressed in two somatic cell types: Leydig cells and Sertoli cells. Unlike interstitially localized Leydig cells, Sertoli cells present within the seminiferous tubules keep contact with spermatogenic cells and form the tight junction to divide the seminiferous epithelium into the basal and adluminal compartments. In this study, the expression and function of SR-BI in rat Sertoli cells were examined with respect to dependency on the spermatogenic cycle, the plasma membrane polarity, and the pituitary hormone follicle-stimulating hormone (FSH). When the expression of SR-BI was histochemically examined with testis sections, both protein and mRNA were already present in Sertoli cells during the first-round spermatogenesis and continued to be detectable thereafter. The level of SR-BI mRNA expression in Sertoli cells was lower at spermatogenic stages I-VI than at other stages. SR-BI was present and functional (in mediating cellular incorporation of lipids of high density lipoprotein) at both the apical and basolateral surfaces of polarized Sertoli cells. Finally, SR-BI expression at both the protein and mRNA levels was stimulated by FSH in cultured Sertoli cells. These results indicate that SR-BI functions on both the apical and basolateral plasma membranes of Sertoli cells, and that SR-BI expression in Sertoli cells changes during the spermatogenic cycle and is stimulated, at least in cultures, by FSH.  相似文献   
52.
Bacterial resistance to the third-generation cephalosporins is an issue of great concern in current antibiotic therapeutics. An important source of this resistance is from production of extended-spectrum (ES) beta-lactamases by bacteria. The Enterobacter cloacae GC1 enzyme is an example of a class C ES beta-lactamase. Unlike wild-type (WT) forms, such as the E. cloacae P99 and Citrobacter freundii enzymes, the ES GC1 beta-lactamase is able to rapidly hydrolyze third-generation cephalosporins such as cefotaxime and ceftazidime. To understand the basis for this ES activity, m-nitrophenyl 2-(2-aminothiazol-4-yl)-2-[(Z)-methoxyimino]acetylaminomethyl phosphonate has been synthesized and characterized. This phosphonate was designed to generate a transition state analog for turnover of cefotaxime. The crystal structures of complexes of the phosphonate with both ES GC1 and WT C. freundii GN346 beta-lactamases have been determined to high resolution (1.4-1.5 Angstroms). The serine-bound analog of the tetrahedral transition state for deacylation exhibits a very different binding geometry in each enzyme. In the WT beta-lactamase the cefotaxime-like side chain is crowded against the Omega loop and must protrude from the binding site with its methyloxime branch exposed. In the ES enzyme, a mutated Omega loop adopts an alternate conformation allowing the side chain to be much more buried. During the binding and turnover of the cefotaxime substrate by this ES enzyme, it is proposed that ligand-protein contacts and intra-ligand contacts are considerably relieved relative to WT, facilitating positioning and activation of the hydrolytic water molecule. The ES beta-lactamase is thus able to efficiently inactivate third-generation cephalosporins.  相似文献   
53.
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.  相似文献   
54.
Hepatocyte growth factor (HGF) is one of the vital factors for liver regeneration. HGF production is induced by the activation of protein kinase A and protein kinase C-mediated pathways, interleukin (IL)-1, tumor necrosis factor (TNF)-alpha, and epidermal growth factor (EGF) in mesenchymal cells. We here report that IL-1 and TNF-alpha, hitherto regarded as HGF inducers, potently inhibited HGF production stimulated by other HGF inducers. IL-1alpha, IL-1beta, and TNF-alpha alone had minimal stimulating effects on HGF production in human dermal fibroblasts, but they strongly inhibited production of HGF induced by cholera toxin, 8-bromo-cAMP, EGF, and phorbol 12-myristate 13-acetate (PMA). Moreover, although the high level of HGF production in MRC-5 cells was enhanced by PMA and less markedly by IL-1beta, HGF production in MRC-5 cells treated with PMA plus IL-1beta was less than that in the cells treated with PMA alone. In the presence of interferon (IFN)-gamma, however, cholera toxin- and 8-bromo-cAMP-induced HGF production was not inhibited by IL-1beta. Pretreatment of cells with IL-1beta suppressed the phosphorylation of cAMP-responsive element-binding protein induced by cholera toxin but not that induced by 8-bromo-cAMP. Taken together, our results indicate that IL-1 inhibited HGF production stimulated by various inducers, including protein kinase A-activating agents, and that IFN-gamma overcame this inhibition of induction of HGF production.  相似文献   
55.
The human polyomavirus JC (JCV) replicates in the nuclei of infected cells. Here we report that JCV virions are efficiently assembled at nuclear domain 10 (ND10), which is also known as promyelocytic leukemia (PML) nuclear bodies. The major capsid protein VP1, the minor capsid proteins VP2 and VP3, and a regulatory protein called agnoprotein were coexpressed from a polycistronic expression vector in COS-7 cells. We found that VP1 accumulated to distinct subnuclear domains in the presence of VP2/VP3 and agnoprotein, while VP1 expressed alone was distributed both in the cytoplasm and in the nucleus. Mutation analysis revealed that discrete intranuclear accumulation of VP1 requires the presence of either VP2 or VP3. However, VP2 or VP3 expressed in the absence of VP1 showed diffuse, not discrete, nuclear localization. The C-terminal sequence of VP2/VP3 contains two basic regions, GPNKKKRRK (cluster 1) and KRRSRSSRS (cluster 2). The deletion of cluster 2 abolished the accumulation of VP1 to distinct subnuclear domains. Deletion of the C-terminal 34 residues of VP2/VP3, including both cluster 1 and cluster 2, caused VP1 to localize both in the cytoplasm and in the nucleus. Using immunoelectron microscopy of cells that coexpressed VP1, VP2/VP3, and agnoprotein, we detected the assembly of virus-like particles in discrete locations along the inner nuclear periphery. Both in oligodendrocytes of the human brain and in transfected cells, discrete nuclear domains for VP1 accumulation were identified as ND10, which contains the PML protein. These results indicate that major and minor capsid proteins cooperatively accumulate in ND10, where they are efficiently assembled into virions.  相似文献   
56.
Farr SA  Banks WA  Uezu K  Gaskin FS  Morley JE 《Life sciences》2004,75(23):2775-2785
Dehydroepiandrosterone sulfate (DHEAS) has been reported to improve memory in aged animals and suggested as a treatment for age-related dementias. The SAMP8 mouse, a model of Alzheimer's disease, has an age-related impairment in learning and memory and an increase in brain levels of amyloid precursor protein (APP) and amyloid beta protein (Abeta). Male SAMP8 mice also have a decrease in testosterone, to which DHEA is a precursor. Diabetes has been suggested as a model of aging and to be linked to Alzheimer's disease. Diabetics can have memory deficits and lower DHEAS levels. Here, we examined the effects of chronic oral DHEAS on acquisition and retention for T-maze footshock avoidance in 12 mo male SAMP8 mice and in CD-1 mice with streptozocin-induced diabetes. Learning and memory were improved in aged SAMP8 mice, but not in CD-1 mice with streptozocin-induced diabetes. These findings suggest that DHEAS is more effective in reversing the cognitive impairments associated with overexpression of Abeta than with diabetes.  相似文献   
57.
Retinoids, vitamin A derivatives, are important regulators of the growth and differentiation of skin cells. Although retinoids are therapeutically used for several skin ailments, little is known about their effects on P2 receptors, known to be involved in various functions in the skin. DNA array analysis showed that treatment of normal human epidermal keratinocytes (NHEKs) with all-trans-retinoic acid (ATRA), an agonist to RAR (retinoic acid receptor), enhanced the expression of mRNA for the P2Y2 receptor, a metabotropic P2 receptor that is known to be involved in the proliferation of the epidermis. The expression of other P2 receptors in NHEKs was not affected by ATRA. ATRA increased the mRNA for the P2Y2 receptor in a concentration-dependent fashion (1 nM to 1 μM). Am80, a synthesized agonist to RAR, showed a similar enhancement, whereas 9-cis-retinoic acid (9-cisRA), an agonist to RXR (retinoid X receptor), enhanced P2Y2 gene expression to a lesser extent. Ca2+ imaging analysis showed that ATRA also increased the function of P2Y2 receptors in NHEKs. Retinoids are known to enhance the turnover of the epidermis by increasing both proliferation and terminal differentiation. The DNA microarray analysis also revealed that ATRA upregulates various genes involved in the differentiation of NHEKs. Our present results suggest that retinoids, at least in part, exert their proliferative effects by upregulating P2Y2 receptors in NHEKs. This effect of retinoids may be closely related to their therapeutic effect against various ailments or aging events in skins such as over-keratinization, pigmentation and re-modeling.  相似文献   
58.
Mutations in the gene encoding UDP-glucuronosyltransferase 1A1 (UGT1A1) may reduce the glucuronidation of estradiol, bilirubin, etc. In the present study, we used a liquid chromatography-tandem mass spectrometry (LC/MS/MS) method to assay the activities of recombinant mutated UGT1A1 toward 17beta-estradiol (E2), by determining its glucuronide (E2G) content. Direct evidence for glucuronide formation was provided by E2G-specific ion peaks. The UGT1A1 activities of G71R (exon 1), F83L (exon 1), I322V (exon 2) and G493R (exon 5) mutants were 24, 30, 18 and 0.6% of the normal UGT1A1 activity, respectively. In conclusion, our study showed that LC/MS/MS enabled accurate evaluation of the effects of mutations on recombinant UGT1A1 activity towards E2.  相似文献   
59.
In higher eukaryotic cells, DNA molecules are present as chromatin fibers, complexes of DNA with various types of proteins; chromatin fibers are highly condensed in metaphase chromosomes during mitosis. Although the formation of the metaphase chromosome structure is essential for the equal segregation of replicated chromosomal DNA into the daughter cells, the mechanism involved in the organization of metaphase chromosomes is poorly understood. To identify proteins involved in the formation and/or maintenance of metaphase chromosomes, we examined proteins that dissociated from isolated human metaphase chromosomes by 0.4 m NaCl treatment; this treatment led to significant chromosome decondensation, but the structure retained the core histones. One of the proteins identified, HP1-BP74 (heterochromatin protein 1-binding protein 74), composed of 553 amino acid residues, was further characterized. HP1-BP74 middle region (BP74Md), composed of 178 amino acid residues (Lys97–Lys274), formed a chromatosome-like structure with reconstituted mononucleosomes and protected the linker DNA from micrococcal nuclease digestion by ∼25 bp. The solution structure determined by NMR revealed that the globular domain (Met153–Thr237) located within BP74Md possesses a structure similar to that of the globular domain of linker histones, which underlies its nucleosome binding properties. Moreover, we confirmed that BP74Md and full-length HP1-BP74 directly binds to HP1 (heterochromatin protein 1) and identified the exact sites responsible for this interaction. Thus, we discovered that HP1-BP74 directly binds to HP1, and its middle region associates with linker DNA at the entry/exit site of nucleosomal DNA in vitro.  相似文献   
60.
Vasopressin-regulated water reabsorption through the water channel aquaporin-2 (AQP2) in renal collecting ducts maintains body water homeostasis. Vasopressin activates PKA, which phosphorylates AQP2, and this phosphorylation event is required to increase the water permeability and water reabsorption of the collecting duct cells. It has been established that the phosphorylation of AQP2 induces its apical membrane insertion, rendering the cell water-permeable. However, whether this phosphorylation regulates the water permeability of this channel still remains unclear. To clarify the role of AQP2 phosphorylation in water permeability, we expressed recombinant human AQP2 in Escherichia coli, purified it, and reconstituted it into proteoliposomes. AQP2 proteins not reconstituted into liposomes were removed by fractionating on density step gradients. AQP2-reconstituted liposomes were then extruded through polycarbonate filters to obtain unilamellar vesicles. PKA phosphorylation significantly increased the osmotic water permeability of AQP2-reconstituted liposomes. We then examined the roles of AQP2 phosphorylation at Ser-256 and Ser-261 in the regulation of water permeability using phosphorylation mutants reconstituted into proteoliposomes. The water permeability of the non-phosphorylation-mimicking mutant S256A-AQP2 and non-phosphorylated WT-AQP2 was similar, and that of the phosphorylation-mimicking mutant S256D-AQP2 and phosphorylated WT-AQP2 was similar. The water permeability of S261A-AQP2 and S261D-AQP2 was similar to that of non-phosphorylated WT-AQP2. This study shows that PKA phosphorylation of AQP2 at Ser-256 enhances its water permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号