首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1497篇
  免费   89篇
  2022年   10篇
  2021年   24篇
  2020年   13篇
  2019年   23篇
  2018年   23篇
  2017年   25篇
  2016年   42篇
  2015年   38篇
  2014年   66篇
  2013年   96篇
  2012年   89篇
  2011年   81篇
  2010年   46篇
  2009年   55篇
  2008年   79篇
  2007年   96篇
  2006年   87篇
  2005年   78篇
  2004年   80篇
  2003年   80篇
  2002年   73篇
  2001年   33篇
  2000年   42篇
  1999年   35篇
  1998年   21篇
  1997年   13篇
  1996年   9篇
  1995年   15篇
  1994年   12篇
  1993年   10篇
  1992年   24篇
  1991年   17篇
  1990年   23篇
  1989年   22篇
  1988年   19篇
  1987年   15篇
  1986年   5篇
  1985年   10篇
  1984年   8篇
  1983年   11篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1975年   2篇
  1974年   5篇
  1972年   2篇
  1969年   2篇
  1968年   2篇
  1966年   3篇
  1965年   2篇
排序方式: 共有1586条查询结果,搜索用时 347 毫秒
41.
Reabsorption of monovalent ions in the kidney is essential for adaptation to freshwater and seawater in teleosts. To assess a possible role of Na+/H+ exchanger 3 (NHE3) in renal osmoregulation, we first identified a partial sequence of cDNA encoding NHE3 from the Japanese eel kidney. For comparison, we also identified cDNAs encoding kidney specific Na+–K+–2Cl? cotransporter 2 (NKCC2α) and Na+–Cl? cotransporter (NCCα). In eels acclimated to a wide range of salinities from deionized freshwater to full-strength seawater, the expression of NHE3 in the kidney was the highest in eel acclimated to full-strength seawater. Meanwhile, the NCCα expression exhibited a tendency to increase as the environmental salinity decreased, whereas the NKCC2α expression was not significantly different among the experimental groups. Immunohistochemical studies showed that NHE3 was localized to the apical membrane of epithelial cells composing the second segments of the proximal renal tubule in seawater-acclimated eel. Meanwhile, the apical membranes of epithelial cells in the distal renal tubule and collecting duct showed more intense immunoreactions of NKCC2α and NCCα, respectively, in freshwater eel than in seawater eel. These findings suggest that renal monovalent-ion reabsorption is mainly mediated by NKCC2α and NCCα in freshwater eel and by NHE3 in seawater eel.  相似文献   
42.
Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.  相似文献   
43.
Elucidation of how pancreatic cancer cells give rise to distant metastasis is urgently needed in order to provide not only a better understanding of the underlying molecular mechanisms, but also to identify novel targets for greatly improved molecular diagnosis and therapeutic intervention. We employed combined proteomic technologies including mass spectrometry and isobaric tags for relative and absolute quantification peptide tagging to analyze protein profiles of surgically resected human pancreatic ductal adenocarcinoma tissues. We identified a protein, dihydropyrimidinase-like 3, as highly expressed in human pancreatic ductal adenocarcinoma tissues as well as pancreatic cancer cell lines. Characterization of the roles of dihydropyrimidinase-like 3 in relation to cancer cell adhesion and migration in vitro, and metastasis in vivo was performed using a series of functional analyses, including those employing multiple reaction monitoring proteomic analysis. Furthermore, dihydropyrimidinase-like 3 was found to interact with Ezrin, which has important roles in cell adhesion, motility, and invasion, while that interaction promoted stabilization of an adhesion complex consisting of Ezrin, c-Src, focal adhesion kinase, and Talin1. We also found that exogenous expression of dihydropyrimidinase-like 3 induced activating phosphorylation of Ezrin and c-Src, leading to up-regulation of the signaling pathway. Taken together, the present results indicate successful application of combined proteomic approaches to identify a novel key player, dihydropyrimidinase-like 3, in pancreatic ductal adenocarcinoma tumorigenesis, which may serve as an important biomarker and/or drug target to improve therapeutic strategies.  相似文献   
44.
Daphne pseudomezereum A. Gray (Dpm) appears to be the only woody species in the north temperate forest that sheds its leaves in the summer while remaining green over winter (i.e. wintergreen leaf habit). Yet, the reason for this odd leaf habit has not been explored. To this end, we examined the microclimatic settings and ecophysiological traits of Dpm and its three native congeners in a field study of eight natural populations. In addition, we conducted a common garden experiment using Dpm plants where potential carbon gain across the seasons was estimated, using actual field microclimate data. Together, these data tested the hypothesis that Dpm retained traits of an open-grown upland ancestor, unable to adapt to the deep summer shade, it survived by becoming summer dormant and wintergreen. Our hypothesis was supported by patterns of leaf ecophysiological traits and carbon gain simulations in Dpm, consistent with the energetic feasibility of a summer dormancy followed by an autumn leaf sprout. We also conclude that carbon deficit driven by low light and high respiration cost is the trigger for the leaf habit of Dpm and assert that its phenological strategy represents a rare but viable alternative strategy for persistence in the temperate understory.  相似文献   
45.

Background

CHK1 is an important effector kinase that regulates the cell cycle checkpoint. Previously, we showed that CHK1 is cleaved in a caspase (CASP)-dependent manner during DNA damage-induced programmed cell death (PCD) and have examined its physiological roles.

Methods and results

In this study, we investigated the behavior of CHK1 in PCD. Firstly, we found that CHK1 is cleaved at three sites in PCD, and all cleavages were inhibited by the co-treatment of a pan-CASP inhibitor or serine protease inhibitors. We also showed that CHK1 is cleaved by CASP3 and/or CASP7 recognizing at 296SNLD299 and 348TCPD351, and that the cleavage results in the enhancement of CHK1 kinase activity. Furthermore, as a result of the characterization of cleavage sites by site-directed mutagenesis and an analysis performed using deletion mutants, we identified 320EPRT323 as an additional cleavage recognition sequence. Considering the consensus sequence cleaved by CASP, it is likely that CHK1 is cleaved by non-CASP family protease(s) recognizing at 320EPRT323. Additionally, the cleavage catalyzed by the 320EPRT323 protease(s) markedly and specifically increased when U2OS cells synchronized into G1 phase were induced to PCD by cisplatin treatment.

Conclusion

CHK1 cleavage is directly and indirectly regulated by CASP and non-CASP family proteases including serine protease(s) and the “320EPRT323 protease(s).” Furthermore, 320EPRT323 cleavage of CHK1 occurs efficiently in PCD which is induced at the G1 phase by DNA damage.

General significance

CASP and non-CASP family proteases intricately regulate cleavage for up-regulation of CHK1 kinase activity during PCD.  相似文献   
46.
Vibrotactile thresholds depend on the characteristics of the vibration, the location of contact with the skin, and the geometry of the contact with the skin. This experimental study investigated vibrotactile thresholds (from 8 to 250?Hz) at five locations on the distal phalanx of the finger with two contactors: (i) a 1-mm diameter circular probe (0.78-mm2 area) with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm2 excitation area), and (ii) a 6-mm diameter circular probe (28-mm2 area) with a 2-mm gap to a fixed circular surround (i.e., 79-mm2 excitation area). With both contactors, especially the smaller contactor at low frequencies (i.e., 8, 16, and 31.5?Hz), thresholds decreased towards the tip of the finger, although there was little variation around the whorl. With low frequencies of vibration, and at all five locations on the finger, similar thresholds were obtained with both contactors, consistent with the NPI channel not changing in sensitivity with a change in the area of stimulation. At high frequencies (i.e., 63, 125, and 250?Hz), thresholds were lower with the larger area of stimulation at all locations, except at the extreme tip of the finger, consistent with spatial summation in the Pacinian channel. It is concluded that with a 6-mm diameter contactor, moderate variations in location around the whorl have little influence on the measured thresholds. With the 1-mm diameter contactor there were greater variations in thresholds and extreme locations, near the nail and the distal interphalangeal joint, may be unsuitable for investigating sensorineural disorders.  相似文献   
47.
This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125?Hz sinusoidal for 600?ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16?Hz or 125?Hz for 3000?ms, varying in magnitude 0 to 30?dB above threshold). At all frequencies from 16 to 125?Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds.  相似文献   
48.
The technique to expand hematopoietic stem cells (HSCs) ex vivo is eagerly anticipated to secure an enough amount of HSCs for clinical applications. Previously we developed a scFv-thrombopoietin receptor (c-Mpl) chimera, named S-Mpl, which can transduce a proliferation signal in HSCs in response to a cognate antigen. However, a remaining concern of the S-Mpl chimera may be the magnitude of the cellular expansion level driven by this molecule, which was significantly less than that mediated by endogenous wild-type c-Mpl. In this study, we engineered a tyrosine motif located in the intracellular domain of S-Mpl based on a top-down approach in order to change the signaling properties of the chimera. The truncated mutant (trunc.) and an amino-acid substitution mutant (Q to L) of S-Mpl were constructed to investigate the ability of these mutants to expand HSCs. The result showed that the truncated and Q to L mutants gave higher and considerably lower number of the cells than unmodified S-Mpl, respectively. The proliferation level through the truncated mutant was even higher than that of non-transduced HSCs with the stimulation of a native cytokine, thrombopoietin. Moreover, we analyzed the signaling properties of the S-Mpl mutants in detail using a pro-B cell line Ba/F3. The data indicated that the STAT3 and STAT5 activation levels through the truncated mutant increased, whereas activation of the Q to L mutant was inhibited by a negative regulator of intracellular signaling, SHP-1. This is the first demonstration that a non-natural artificial mutant of a cytokine receptor is effective for ex vivo expansion of hematopoietic cells compared with a native cytokine receptor.  相似文献   
49.
Glutamate-mediated excitotoxicity is now accepted as a major mechanism of ischemic neuronal damage. In the infarct core region, massive neuronal death is observed, but neurons in the surroundings of the core (ischemic penumbra) seem viable at the time of stroke. Several hours or days after a stroke, however, many neurons in the penumbra will undergo delayed neuronal death (DND). The mechanisms responsible for such DND are not fully understood. In this study, we investigated whether and how glutamate-mediated localized excitotoxic neuronal death affects surrounding neurons and astrocytes. To induce spatially-restricted excitotoxic neuronal death, a caged glutamate was focally photolyzed by a UV flash in neuron/astrocyte co-cultures. Uncaging of the glutamate resulted in acute neuronal death in the flashed area. After that, DND was observed in the surroundings of the flashed area late after the uncaging. In contrast, DND was not observed in neuron-enriched cultures, suggesting that functional changes in astrocytes, not neurons, after focal acute neuronal death were involved in the induction of DND. The present in vitro study showed that the spatially-restricted excitotoxic neuronal death resulted in DND in the surroundings of the flashed area, and suggested that the nitric oxide (NO)-induced reduction in the expression of astrocytic GLT-1 was responsible for the occurrence of the DND.  相似文献   
50.
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号