首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   13篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   13篇
  2015年   10篇
  2014年   8篇
  2013年   24篇
  2012年   18篇
  2011年   32篇
  2010年   6篇
  2009年   9篇
  2008年   28篇
  2007年   27篇
  2006年   21篇
  2005年   20篇
  2004年   21篇
  2003年   23篇
  2002年   16篇
  2001年   17篇
  2000年   15篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   8篇
  1991年   6篇
  1990年   13篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1983年   2篇
  1982年   3篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1966年   6篇
  1965年   1篇
排序方式: 共有440条查询结果,搜索用时 656 毫秒
41.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   
42.
Uncoupling protein (UCP)-1 expressed in brown adipose tissue plays an important role in thermogenesis. Recent data suggest that brown-like adipocytes in white adipose tissue (WAT) and skeletal muscle play a crucial role in the regulation of body weight. Understanding of the mechanism underlying the increase in UCP-1 expression level in these organs should, therefore, provide an approach to managing obesity. The thyroid hormone (TH) has profound effects on mitochondrial biogenesis and promotes the mRNA expression of UCP in skeletal muscle and brown adipose tissue. However, the action of TH on the induction of brown-like adipocytes in WAT has not been elucidated. Thus we investigate whether TH could regulate UCP-1 expression in WAT using multipotent cells isolated from human adipose tissue. In this study, triiodothyronine (T(3)) treatment induced UCP-1 expression and mitochondrial biogenesis, accompanied by the induction of the CCAAT/enhancer binding protein, peroxisome proliferator-activated receptor-γ coactivator-1α, and nuclear respiratory factor-1 in differentiated human multipotent adipose-derived stem cells. The effects of T(3) on UCP-1 induction were dependent on TH receptor-β. Moreover, T(3) treatment increased oxygen consumption rate. These findings indicate that T(3) is an active modulator, which induces energy utilization in white adipocytes through the regulation of UCP-1 expression and mitochondrial biogenesis. Our findings provide evidence that T(3) serves as a bipotential mediator of mitochondrial biogenesis.  相似文献   
43.
BackgroundThe activation of hepatic stellate cells plays a central role in the development of liver fibrosis during chronic liver trauma. The aim of the present study was to identify a compound that inhibits the activation process of stellate cells.MethodsRat primary cultured stellate cells and a human stellate cell line (LX-2) were used. The effects of arundic acid on the expression of α-smooth muscle actin, collagen 1α1, and cytoglobin were evaluated.ResultsArundic acid (300 μM) inhibited the activation of primary rat stellate cells, as determined by morphological transformation and α-smooth muscle actin expression, after both prophylactic and therapeutic treatment. The level of α-smooth muscle actin mRNA showed a dose-dependent decrease in response to arundic acid, and 50 μM arundic acid exhibited the maximum inhibition of collagen 1α1 mRNA expression. In contrast, arundic acid triggered an unexpected increase in mRNA and protein levels of cytoglobin, the fourth globin in mammals expressed exclusively in hepatic stellate cells. The effect of arundic acid on the level of α-smooth muscle actin mRNA was abrogated in HSCs treated with cytoglobin siRNA. Arundic acid decreased the expression of collagen 1α1 mRNA in LX-2 cells.ConclusionArundic acid affects the activation process of hepatic stellate cells via the unexpected induction of cytoglobin.  相似文献   
44.
Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Multiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the association of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques belonging to A(+) (n = 6), E(+) (n = 6), B(+) (n = 4), and J(+) (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A(+) animals, including two controllers, showed slower disease progression, whereas J(+) animals exhibited rapid progression. E(+) and B(+) animals showed intermediate plasma viral loads and survival periods. Gag-specific CD8(+) T-cell responses were efficiently induced in A(+) animals, while Nef-specific CD8(+) T-cell responses were in A(+), E(+), and B(+) animals. Multiple comparisons among these groups revealed significant differences in survival periods, peripheral CD4(+) T-cell decline, and SIV-specific CD4(+) T-cell polyfunctionality in the chronic phase. This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the analysis of virus-host immune interaction.  相似文献   
45.
Soymorphin-5 (YPFVV) derived from soybean β-conglycinin β-subunit is a μ-opioid agonist peptide having anxiolytic-like activity. Here, we show that soymorphin-5 improves glucose and lipid metabolism after long-term oral administration to KKAy mice, a type 2 diabetes model animal. Soymorphin-5 inhibited hyperglycemia without an increase in plasma insulin levels in KKAy mice. Soymorphin-5 also decreased plasma and liver triglyceride (TG) levels and liver weight, suggesting that soymorphin-5 improved lipid metabolism. Soymorphin-5 increased plasma adiponectin concentration and liver mRNA expression of AdipoR2, a subtype of adiponectin receptor that is involved in stimulating the peroxisome proliferator-activated receptor (PPAR)α pathway and fatty acid β-oxidation. The expressions of the mRNA of PPARα and its target genes acyl-CoA oxidase, carnitine palmitoyltransferase 1 A, and uncoupling protein-2, in the liver were also increased after oral administration of soymorphin-5. Furthermore, des-Tyr-soymorphin-5 (PFVV) without μ-opioid and anxiolytic-like activities did not decrease blood glucose levels in KKAy mice. These results suggest that μ-opioid peptide soymorphin-5 improves glucose and lipid metabolism via activation of the adiponectin and PPARα system and subsequent increases of β-oxidation and energy expenditure in KKAy mice.  相似文献   
46.
Aoyama M  Kawada T  Satake H 《Peptides》2012,34(1):186-192
We previously substantiated that Ci-TK, a tachykinin of the protochordate, Ciona intestinalis (Ci), triggered oocyte growth from the vitellogenic stage (stage II) to the post-vitellogenic stage (stage III) via up-regulation of the gene expression and enzymatic activity of the proteases: cathepsin D, carboxypeptidase B1, and chymotrypsin. In the present study, we have elucidated the localization, gene expression and activation profile of these proteases. In situ hybridization showed that the Ci-cathepsin D mRNA was present exclusively in test cells of the stage II oocytes, whereas the Ci-carboxypeptidase B1 and Ci-chymotrypsin mRNAs were detected in follicular cells of the stage II and stage III oocytes. Double-immunostaining demonstrated that the immunoreactivity of Ci-cathepsin D was largely colocalized with that of the receptor of Ci-TK, Ci-TK-R, in test cells of the stage II oocytes. Ci-cathepsin D gene expression was detected at 2h after treatment with Ci-TK, and elevated for up to 5h, and then slightly decreased. Gene expression of Ci-carboxypeptidase B1 and Ci-chymotrypsin was observed at 5h after treatment with Ci-TK, and then decreased. The enzymatic activities of Ci-cathepsin D, Ci-carboxypeptidase B1, and Ci-chymotrypsin showed similar alterations with 1-h lags. These gene expression and protease activity profiles verified that Ci-cathepsin D is initially activated, which is followed by the activation of Ci-carboxypeptidase B1 and Ci-chymotrypsin. Collectively, the present data suggest that Ci-TK directly induces Ci-cahtepsin D in test cells expressing Ci-TK receptor, leading to the secondary activation of Ci-chymotrypsin and Ci-carboxypeptidase B1 in the follicle in the tachykininergic oocyte growth pathway.  相似文献   
47.
Tiliroside contained in several dietary plants, such as rose hips, strawberry and raspberry, is a glycosidic flavonoid and possesses anti-inflammatory, antioxidant, anticarcinogenic and hepatoprotective activities. Recently, it has been reported that the administration of tiliroside significantly inhibited body weight gain and visceral fat accumulation in normal mice. In this study, we evaluated the effects of tiliroside on obesity-induced metabolic disorders in obese-diabetic KK-A(y) mice. In KK-A(y) mice, the administration of tiliroside (100 mg/kg body weight/day) for 21 days failed to suppress body weight gain and visceral fat accumulation. Although tiliroside did not affect oxygen consumption, respiratory exchange ratio was significantly decreased in mice treated with tiliroside. In the analysis of metabolic characteristics, it was shown that plasma insulin, free fatty acid and triglyceride levels were decreased, and plasma adiponectin levels were increased in mice administered tiliroside. The messenger RNA expression levels of hepatic adiponectin receptor (AdipoR)-1 and AdipoR2 and skeletal muscular AdipoR1 were up-regulated by tiliroside treatment. Furthermore, it was indicated that tiliroside treatment activated AMP-activated protein kinase in both the liver and skeletal muscle and peroxisome proliferator-activated receptor α in the liver. Finally, tiliroside inhibited obesity-induced hepatic and muscular triglyceride accumulation. These findings suggest that tiliroside enhances fatty acid oxidation via the enhancement adiponectin signaling associated with the activation of both AMP-activated protein kinase and peroxisome proliferator-activated receptor α and ameliorates obesity-induced metabolic disorders, such as hyperinsulinemia and hyperlipidemia, although it does not suppress body weight gain and visceral fat accumulation in obese-diabetic model mice.  相似文献   
48.
The Rnd proteins Rnd1, Rnd2, and Rnd3/RhoE are well known as key regulators of the actin cytoskeleton in various cell types, but they comprise a distinct subgroup of the Rho family in that they are GTP bound and constitutively active. Functional differences of the Rnd proteins in RhoA inhibition signaling have been reported in various cell types. Rnd1 and Rnd3 antagonize RhoA signaling by activating p190 RhoGAP, whereas Rnd2 does not. However, all the members of the Rnd family have been reported to bind directly to p190 RhoGAP and equally induce activation of p190 RhoGAP in vitro, and there is no evidence that accounts for the functional difference of the Rnd proteins in RhoA inhibition signaling. Here we report the role of the N-terminal region in signaling. Rnd1 and Rnd3, but not Rnd2, have a KERRA (Lys-Glu-Arg-Arg-Ala) sequence of amino acids in their N-terminus, which functions as the lipid raft-targeting determinant. The sequence mediates the lipid raft targeting of p190 RhoGAP correlated with its activation. Overall, our results demonstrate a novel regulatory mechanism by which differential membrane targeting governs activities of Rnd proteins to function as RhoA antagonists.  相似文献   
49.
50.
A bisabolane sesquiterpene endoperoxide compound, 3,6-epidioxy-1,10-bisaboladiene (EDBD), was isolated from edible wild plants grown in the northern area of Japan, Cacalia delphiniifolia and Cacalia hastata, using a mutant yeast (cdc2-1 rad9Δ). It showed cytotoxicity at IC(50) = 3.4 μM and induced apoptosis against the human promyelocytic leukemia cell line HL60 through a new stable rearrangement product (1) when in the presence of FeSO(4). This conversion mechanism is different from another sesquiterpene endoperoxide lactone compound, dihydroartemisinin (DHA), which is an anti-malarial drug. The cytotoxicity of EDBD decreased in the presence of the ferrous ion chelating drug deferoxamine mesylate (DFOM), and this suggested that the structural change of the drug caused by Fe(2+) may be responsible for its biological activities. EDBD induced apoptosis via phosphorylation of p38 mitogen-activated protein kinase (MAPK) in HL60 cells, and was detected by Western blot. EDBD resulted in an immediate increase in DCF fluorescence intensity in HL60 cells using DCFH-DA (2',7'-dichlorofluorescin diacetate) assay. The in vitro reaction of EDBD with FeSO(4) also increased DCF fluorescence intensity in a dose dependent manner. These results showed that the biological activity of EDBD involves an unstable carbon-centered radical intermediate. Furthermore, there was no similarity between the JFCR39 fingerprints of EDBD and DHA (correlation coefficient on COMPARE Analysis γ = 0.158). EDBD showed anti-tumor effects against a xenograft of Lox-IMVI cells in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号