首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   36篇
  683篇
  2022年   5篇
  2021年   10篇
  2020年   9篇
  2019年   7篇
  2018年   17篇
  2017年   9篇
  2016年   22篇
  2015年   25篇
  2014年   27篇
  2013年   41篇
  2012年   31篇
  2011年   54篇
  2010年   40篇
  2009年   28篇
  2008年   37篇
  2007年   40篇
  2006年   33篇
  2005年   28篇
  2004年   28篇
  2003年   26篇
  2002年   21篇
  2001年   16篇
  2000年   15篇
  1999年   6篇
  1998年   9篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   11篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1972年   4篇
  1969年   3篇
  1966年   3篇
  1965年   3篇
  1959年   2篇
  1934年   1篇
排序方式: 共有683条查询结果,搜索用时 0 毫秒
61.
The induction of type I (alphabeta) IFN following virus infection is necessary for the stimulation of effective antiviral host defense. In fibroblasts, a subset of primary genes (including those encoding IFN-beta and IFN-alpha4) are induced directly by intracellular dsRNA generated by the virus during its replication. These primary type I IFNs induce expression of IFN regulatory factor (IRF)-7, required for production of a second cascade of IFN-alpha subtypes and the further establishment of a complete antiviral state. Previously, we had reported on a role for Fas-associated death domain-containing protein (FADD) in the control of TLR-independent innate immune responses to virus infection. Our data in this study demonstrate that FADD is not only required for efficient primary gene induction, but is also essential for induction of Irf7 and effective expression of secondary IFN-alphas and other antiviral genes. Ectopic overexpression of IRF-7 partially rescued dsRNA responsiveness and IFN-alpha production, and a constitutively active variant of IRF-7 displayed normal activity in Fadd(-/-) murine embryonic fibroblasts. MC159, a FADD-interacting viral protein encoded by the molluscum contagiosum poxvirus was found to inhibit dsRNA-activated signaling events upstream of IRF-7. These data indicate that FADD's antiviral activity involves regulation of IRF-7-dependent production of IFN-alpha subtypes and consequent induction of secondary antiviral genes.  相似文献   
62.
63.
64.
Abiotic stresses such as cold, salinity, drought, wounding, and heavy metal contamination adversely affect crop productivity throughout the world. Prosopis juliflora is a phreatophyte that can tolerate severe adverse environmental conditions such as drought, salinity, and heavy metal contamination. As a first step towards the characterization of genes that contribute to combating abiotic stress, construction and analysis of a cDNA library of P. juliflora genes is reported here. Random expressed sequence tag (EST) sequencing of 1750 clones produced 1467 high-quality reads. These clones were classified into functional categories, and BLAST comparisons revealed that 114 clones were homologous to genes implicated in stress response(s) and included heat shock proteins, metallothioneins, lipid transfer proteins, and late embryogenesis abundant proteins. Of the ESTs analyzed, 26% showed homology to previously uncharacterized genes in the databases. Fifty-two clones from this category were selected for reverse Northern analysis: 21 were shown to be upregulated and 16 downregulated. The results obtained by reverse Northern analysis were confirmed by Northern analysis. Clustering of the 1467 ESTs produced a total of 295 contigs encompassing 790 ESTs, resulting in a 54.2% redundancy. Two of the abundant genes coding for a nonspecific lipid transfer protein and late embryogenesis abundant protein were sequenced completely. Northern analysis (after polyethylene glycol stress) of the 2 genes was carried out. The implications of the analyzed genes in abiotic stress tolerance are also discussed.  相似文献   
65.
During ovulation, granulosa cells and cumulus cells synthesize and secrete a wide variety of factors including members of the IL cytokine family via the process of exocytosis. Exocytosis is controlled by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex consisting of proteins residing in the vesicle membrane and the plasma membrane. One of the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor proteins, synaptosomal-associated protein (SNAP)25, is expressed abundantly in neuronal cells and is also induced transiently in the rat ovary in response to LH. Therefore, we sought to determine the molecular mechanisms controlling ovarian expression of the Snap25 gene, and the role of SNAP25 in exocytosis of secreted factors, such as ILs from cumulus cells and granulosa cells. In preovulatory follicles of equine (e) chorionic gonadotropin (CG)-primed mice, expression of Snap25 mRNA was negligible but was induced markedly 8 h after human (h) CG stimulation. In Pgr null mice Snap25 mRNA and protein levels were significantly lower at 8 h after hCG compared with wild-type mice. To analyze the molecular mechanisms by which progesterone receptor regulates this gene, a 1517-bp murine Snap25 promoter-luciferase reporter construct was generated and transfected into granulosa cell cultures. Three specificity protein (SP)-1/SP-3 sites, but not consensus activator protein 1 or cAMP response element sites, were essential for basal and forskolin/phorbol 12-myristate 13-acetate-induced promoter activity in granulosa cells. The induction was significantly suppressed by PGR antagonist, RU486. Treatment of cumulus oocyte complexes or granulosa cells with FSH/amphiregulin, LH, or forskolin/phorbol 12-myristate 13-acetate-induced elevated expression of Snap25 mRNA and increased the secretion of eight cytokine and chemokine factors. Transfection of granulosa cells with Snap25 small interfering RNA significantly reduced the levels of both SNAP25 protein and the secretion of cytokines. From these results, we conclude that progesterone-progesterone receptor-mediated SNAP25 expression in cumulus oocyte complexes and granulosa cells regulates cytokine and chemokine secretion via an exocytosis system.  相似文献   
66.
New polymeric Zn(salen) complex was employed in the enantioselective phenylacetylene addition to aldehydes and ketones to produce corresponding chiral secondary propargylic alcohols with yields (up to 96%) and enantioselectivity (up to 72%) and tertiary propargylic alcohols with yields (up to 79%) and enantioselectivity (up to 68%) at room temperature, with added advantage of four times reuse with retention of enantioselectivity.  相似文献   
67.
Strychnos potatorum (Fam: Loganiaceae) Linn seeds are useful in the treatment of gastropathy in Indian traditional system of medicine. The present study describes the antiulcerogenic potential of S. potatorum Linn seeds on aspirin plus pyloric ligation (Aspirin+PL)-induced gastric ulcer model to substantiate its folklore claim. The seed powder (SPP) and aqueous extract of the seeds (SPE) at two doses 100 and 200 mg/kg, p.o. prevented ulcer formation by decreasing acid secretory activity and increasing the mucin activity in rats. The antiulcerogenic potential was further confirmed by the histopathological studies of stomach mucosa. The results indicate that SPP and SPE exhibit antiulcerogenic activity by both antisecretory and mucoprotective actions. The mucoprotective action of SPP and SPE may be due to the presence of polysaccharides in seeds. The antiulcerogenic potential of SPP and SPE was compared with the standard antiulcer drug, ranitidine.  相似文献   
68.
Vadali K  Cai X  Schaller MD 《IUBMB life》2007,59(11):709-716
Recent studies using animal models have demonstrated an important role for FAK in the cardiovascular system. In particular, FAK is essential for angiogenesis in the embryo, functions in heart development and modulates the response of cardiomyocytes to pressure overload in adult mice. FAK function at the cellular level is discussed to provide insight into the mechanisms regulating these biological events and the role of FAK in controlling endothelial junctions and responses to mechanical stimulation are discussed.  相似文献   
69.
70.
The discovery of oxygen is considered by some to be the most important scientific discovery of all time—from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body—on demand, i.e., just in time. Humans use oxygen to extract approximately 2550 calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 mol of dioxygen per day, or 2.5 × 10− 4 mol s− 1. This is an average rate of oxygen utilization of 2.5 × 10− 18 mol cell− 1 s− 1, i.e., 2.5 amol cell− 1 s− 1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from < 1 to > 350 amol cell− 1 s− 1. There is a loose positive linear correlation of the rate of oxygen consumption by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号