首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   13篇
  国内免费   1篇
  2023年   4篇
  2021年   10篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   10篇
  2015年   17篇
  2014年   8篇
  2013年   12篇
  2012年   12篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   4篇
  1988年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有144条查询结果,搜索用时 421 毫秒
21.
C. elegans has long been used as an experimentally tractable organism for discovery of fundamental mechanisms that underlie metazoan cellular function, development, neurobiology, and behavior. C. elegans has more recently been exploited to study the interplay of environment and genetics on lipid storage pathways. As an experimental platform, C. elegans is amenable to an extensive array of forward and reverse genetic, a variety of “omics” and anatomical approaches that together allow dissection of complex physiological pathways. This is particularly relevant to the study of fat biology, as energy balance is ultimately an organismal process that involves behavior, nutrient digestion, uptake and transport, as well as a variety of cellular activities that determine the balance between lipid storage and utilization. C. elegans offers the opportunity to dissect these pathways and various cellular and organismal homeostatic mechanisms in the context of a genetically tractable, intact organism.  相似文献   
22.
The microbial degradation of lignocellulose biomass is not only an important biological process but is of increasing industrial significance in the bioenergy sector. The mechanism by which the plant cell wall, an insoluble composite structure, activates the extensive repertoire of microbial hydrolytic enzymes required to catalyze its degradation is poorly understood. Here we have used a transposon mutagenesis strategy to identify a genetic locus, consisting of two genes that modulate the expression of xylan side chain-degrading enzymes in the saprophytic bacterium Cellvibrio japonicus. Significantly, the locus encodes a two-component signaling system, designated AbfS (sensor histidine kinase) and AbfR (response regulator). The AbfR/S two-component system is required to activate the expression of the suite of enzymes that remove the numerous side chains from xylan, but not the xylanases that hydrolyze the beta1,4-linked xylose polymeric backbone of this polysaccharide. Studies on the recombinant sensor domain of AbfS (AbfS(SD)) showed that it bound to decorated xylans and arabinoxylo-oligosaccharides, but not to undecorated xylo-oligosaccharides or other plant structural polysaccharides/oligosaccharides. The crystal structure of AbfS(SD) was determined to a resolution of 2.6A(.) The overall fold of AbfS(SD) is that of a classical Per Arndt Sim domain with a central antiparallel four-stranded beta-sheet flanked by alpha-helices. Our data expand the number of molecules known to bind to the sensor domain of two-component histidine kinases to include complex carbohydrates. The biological rationale for a regulatory system that induces enzymes that remove the side chains of xylan, but not the hydrolases that cleave the backbone of the polysaccharide, is discussed.  相似文献   
23.
Using site-specific fluorescence probes and cross-linking we demonstrated that cofilin (ADF), a key regulator of actin cellular dynamics, weakens longitudinal contacts in F-actin in a cooperative manner. Differential scanning calorimetry detected a dual nature of cofilin effects on F-actin conformation. At sub-stoichiometric cofilin to actin ratios, cofilin stabilized sterically and non-cooperatively protomers at the points of attachment, and destabilized allosterically and cooperatively protomers in the cofilin-free parts of F-actin. This destabilizing effect had a long range, with one cofilin molecule affecting more than 100 protomers, and concentration-dependent amplitude that reached maximum at about 1:2 molar ratio of cofilin to actin. In contrast to existing models, our results suggest an allosteric mechanism of actin depolymerization by cofilin. We propose that cofilin is less likely to sever actin filaments at the points of attachment as thought previously. Instead, due to its dual structural effect, spontaneous fragmentation occurs most likely in cofilin-free segments of filaments weakened allosterically by nearby cofilin molecules.  相似文献   
24.
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities(modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in eq-uipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.  相似文献   
25.
26.
27.
28.
29.
The higher vocal center (HVC) of the songbird forebrain exhibits persistent neurogenesis in adulthood, particularly in a region of the mediocaudal neostriatum that is associated with a subventricular layer of estrogen receptive cells. We asked whether estrogens might influence adult neurogenesis, by assessing the effect of ovariectomy on HVC neuronal production in the adult female canary. Fifteen 1-year-old females were separated into groups of ovariectomized, estradiol-replaced ovariectomized, and gonadally intact birds. To label dividing cells and their progency, the birds were given [3H]thymidine for 8 days, killed 32 days later, and their brains autoradiographed. A significant rise was noted in the number of HVC neurons per section in estradiol-treated birds relative to the untreated control birds. The number of [3H]-thymidine-labeled HVC neurons was also higher in the estrogen-treated birds; however, the neuronal labeling index (LI) did not vary as a function of estradiol replacement, as the total number of HVC neurons rose in parallel with the added new neurons. In contrast, the neuronal LI did rise as a result of ovariectomy, and this ovariectomy-associated increase in the LI was not reversed by estradiol. Among non-neuronal cell types, the endothelial LI was higher in estrogen-treated birds than in their untreated counterparts, suggesting estrogen-associated angiogenesis. Radioimmunoassay confirmed that serum estradiol was reduced in the castrated birds. Since estrogen appeared to promote the survival of [3H]thymidine+ neurons, we next sought to determine whether estrogen acted directly on the newly generated neurons, or rather indirectly through an intermediary cell population. To this end, we asked whether the new neurons or their precursors expressed estrogen receptor immunoreactivity (ER-IR). Five adult male canaries were given [3H]thymidine for periods ranging from 2 to 28 days, killed at varying times up to 3 weeks therafter, then probed for ER-IR and autoradiographed. [3H]thymidine+ cells displayed no detectable ER-IR within their first 4 weeks of postmitotic life. Rather, during migration from the ventricular zone (VZ), the new neurons traversed a layer of mitotically quiescent, ER+ subventricular cells. Double labeling for ER-IR and cell-type selective antigens confirmed that these ER+ cells were neurons. These results indicate that the early survival of new neurons in the adult songbird HVC is promoted by estrogen, and may be mediated by the estrogen-stimulated paracrine release of neurotrophic agents by ER-IR subventricular neurons. Our data suggest that estrogen's promotion of neuronal survival may operate concurrently with an estrogen-independent ovarian suppression of neuronal mitogenesis.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号