首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2574篇
  免费   159篇
  国内免费   4篇
  2023年   18篇
  2022年   38篇
  2021年   58篇
  2020年   37篇
  2019年   43篇
  2018年   52篇
  2017年   52篇
  2016年   57篇
  2015年   101篇
  2014年   117篇
  2013年   151篇
  2012年   169篇
  2011年   181篇
  2010年   106篇
  2009年   99篇
  2008年   121篇
  2007年   134篇
  2006年   113篇
  2005年   74篇
  2004年   78篇
  2003年   61篇
  2002年   49篇
  2001年   62篇
  2000年   53篇
  1999年   43篇
  1998年   20篇
  1996年   26篇
  1995年   21篇
  1994年   16篇
  1993年   20篇
  1992年   24篇
  1991年   33篇
  1990年   39篇
  1989年   25篇
  1988年   36篇
  1987年   39篇
  1986年   31篇
  1985年   30篇
  1984年   22篇
  1983年   21篇
  1982年   20篇
  1981年   15篇
  1980年   19篇
  1979年   27篇
  1978年   15篇
  1977年   24篇
  1975年   16篇
  1974年   16篇
  1973年   14篇
  1972年   12篇
排序方式: 共有2737条查询结果,搜索用时 31 毫秒
71.
The lysolecithin extraction procedure originally described by Sadleret al. (1974) has been modified to yield a H+-ATPase with high levels of Pi-ATP exchange activity (400–600 nmol × min–1 × mg–1). This activity is further enhanced (1400–1600 nmol × min–1 × mg–1) following sucrose density gradient centrifugation in the presence of asolectin. This enhancement results in part from a lipid-dependent activation and in part from removal of inactive complexes. The H+ translocating activity of the complex has been determined spectrophotometrically using binding of oxonol VI as an indicator of membrane potential. Pi-ATP exchange, ATP hydrolysis, and oxonol binding are sensitive to energy-transfer inhibitors (oligomycin, rutamycin) and/or uncouplers (DNP, FCCP).  相似文献   
72.
73.
The rat hepatic stearoyl-CoA desaturation decreased by 3.7-fold in streptozotocin-induced diabetes. Insulin treatment of diabetic rats increased the enzyme activity by 7-fold. In marked contrast to glucose administration, fructose feeding in diabetic rats resulted in 20-fold stimulation of stearoyl-CoA desaturation, although both carbohydrates stimulated stearoyl-CoA desaturation in normal rats. Measurement of the microsomal electron transfer components showed no significant changes in the NADH-cytochrome b5 reductase activity or in the concentration of cytochrome b5. However, the activity of the terminal desaturase changed in a parallel fashion as the amount of terminal desaturase reflect changes in the overall desaturation. Supplementation of various microsomes with the saturating amount of purified terminal desaturase resulted in the formation of similar amounts of catalytically active complex and increased the stearoyl-CoA desaturation to the same level suggesting that the changes in the amount of terminal desaturase reflect changes in the overall desaturation. The results support the suggestion that both insulin and the intermediates of carbohydrate metabolism are involved in the regulation of terminal desaturase.  相似文献   
74.
The reactions of hydroxyl radicals with 30 dipeptides and several larger peptides were studied in aqueous solutions. The OH radicals were generated by U.V. photolysis of H2O2. The short-lived peptide radicals were spin-trapped using t-nitrosobutane and identified by e.s.r. For dipeptides containing the amino terminal residues glycine, alanine and phenylalanine, abstraction of the hydrogen from the carbon adjacent to the peptide nitrogen was the major process leading to the spin-adducts. Such radicals will be referred to as backbone radicals. Dipeptides with a carbonyl terminal serine residue and also glycylglutamic acid form both backbone and side-chain radicals, with the latter being formed in larger quantities. For dipeptides, side-chain radicals were detected on either the carboxyl or amino terminal residues of both. The effect of pD on the e.s.r. sectrum of the spin-adducts of glycylglycine was studied and the pK of the carboxyl group of this radical was determined to be 2.5. For (Ala)3 and (Ala)n, with an average value of n = 1800, backbone and minor side-chain radicals were observed. For ribonucleases-S-peptide, containing 20 amino acid residues, both backbone and side-chain radicals were detected.  相似文献   
75.
The montmorillonite-catalyzed reactions of the 5′-phosphorimidazolide of adenosine in the presence of fluoride were investigated to complete our study on the effect of salts on this type of reaction. Both anions and cations have been found to influence the oligomerization reactions of the activated nucleotides, being used here as a model system for pre-biotic RNA synthesis. However, in total contrast to the behavior of the activated nucleotides in the presence of montmorillonite and other salts, alkali metal fluorides did not yield any detectable oligomerization products except in very dilute (<0.005 M) solutions of fluoride. Instead, 5′-phosphorofluoridates were formed. Their identity was confirmed by a combination of HPLC, mass spectrometry, synthesis, and NMR.  相似文献   
76.
Maintenance of epithelial cell adhesion is crucial for epidermal morphogenesis and homeostasis and relies predominantly on the interaction of keratins with desmosomes. Although the importance of desmosomes to epidermal coherence and keratin organization is well established, the significance of keratins in desmosome organization has not been fully resolved. Here, we report that keratinocytes lacking all keratins show elevated, PKC-α–mediated desmoplakin phosphorylation and subsequent destabilization of desmosomes. We find that PKC-α activity is regulated by Rack1–keratin interaction. Without keratins, desmosomes assemble but are endocytosed at accelerated rates, rendering epithelial sheets highly susceptible to mechanical stress. Re-expression of the keratin pair K5/14, inhibition of PKC-α activity, or blocking of endocytosis reconstituted both desmosome localization at the plasma membrane and epithelial adhesion. Our findings identify a hitherto unknown mechanism by which keratins control intercellular adhesion, with potential implications for tumor invasion and keratinopathies, settings in which diminished cell adhesion facilitates tissue fragility and neoplastic growth.  相似文献   
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号