首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2572篇
  免费   161篇
  国内免费   4篇
  2737篇
  2023年   18篇
  2022年   38篇
  2021年   58篇
  2020年   37篇
  2019年   43篇
  2018年   52篇
  2017年   52篇
  2016年   57篇
  2015年   101篇
  2014年   117篇
  2013年   151篇
  2012年   169篇
  2011年   181篇
  2010年   106篇
  2009年   99篇
  2008年   121篇
  2007年   134篇
  2006年   113篇
  2005年   74篇
  2004年   78篇
  2003年   61篇
  2002年   49篇
  2001年   62篇
  2000年   53篇
  1999年   43篇
  1998年   20篇
  1996年   26篇
  1995年   21篇
  1994年   16篇
  1993年   20篇
  1992年   24篇
  1991年   33篇
  1990年   39篇
  1989年   25篇
  1988年   36篇
  1987年   39篇
  1986年   31篇
  1985年   30篇
  1984年   22篇
  1983年   21篇
  1982年   20篇
  1981年   15篇
  1980年   19篇
  1979年   27篇
  1978年   15篇
  1977年   24篇
  1975年   16篇
  1974年   16篇
  1973年   14篇
  1972年   12篇
排序方式: 共有2737条查询结果,搜索用时 15 毫秒
61.
Acetylcholinesterase, a major component of the central and peripheral nervous systems, is ubiquitous among multicellular animals, where its main function is to terminate synaptic transmission by hydrolyzing the neurotransmitter, acetylcholine. However, previous reports describe cholinesterase activities in several plant species and we present data for its presence in tomato plants. Ectopic expression of a recombinant form of the human enzyme and the expression pattern of the transgene and the accumulation of its product in transgenic tomato plants are described. Levels of acetylcholinesterase activity in different tissues are closely effected by and can be separated from -tomatine, an anticholinesterase steroidal glycoalkaloid. The recombinant enzyme can also be separated from the endogenous cholinesterase activity by its subcellular localization and distinct biochemical properties. Our results provide evidence for the co-existence in tomato plants of both acetylcholinesterase activity and a steroidal glycoalkaloid with anticholinesterase activity and suggest spatial mutual exclusivity of these antagonistic activities. Potential functions, including roles in plant-pathogen interactions are discussed.  相似文献   
62.
The purpose of this study was to formulate a gelled self-emulsifying drug delivery system (SEDDS) containing ketoprofen as an intermediate in the development of sustained release solid dosage form. Captex 200 (an oil), Tween 80 (a surfactant), and Capmul MCM (a cosurfactant) were used to formulate SEDDS. Silicon dioxide was used as a gelling agent, which may aid in solidification and retardation of drug release. Effect of concentrations of cosurfactant and gelling agent on emulsification process and in vitro drug diffusion was studied using 32 factorial design. Multiple regression analysis data and response surfaces obtained showed that liquid crystal phase viscosity increased significantly with increasing amount of silicon dioxide, which in turn caused an increase in average droplet size of resultant emulsion and slower drug diffusion. Drug release from the formulation increased with increasing amount of cosurfactant.  相似文献   
63.
NAD(P)H:nitrate reductase (NaR, EC 1.7.1.1-3) is a useful enzyme in biotechnological applications, but it is very complex in structure and contains three cofactors-flavin adenine dinucleotide, heme-Fe, and molybdenum-molybdopterin (Mo-MPT). A simplified nitrate reductase (S-NaR1) consisting of Mo-MPT-binding site and nitrate-reducing active site was engineered from yeast Pichia angusta NaR cDNA (YNaR1). S-NaR1 was cytosolically expressed in high-density fermenter culture of methylotrophic yeast Pichia pastoris. Total amount of S-NaR1 protein produced was approximately 0.5 g per 10 L fermenter run, and methanol phase productivity was 5 microg protein/g wet cell weight/h. Gene copy number in genomic DNA of different clones showed direct correlation with the expression level. S-NaR1 was purified to homogeneity in one step by immobilized metal affinity chromatography (IMAC) and total amount of purified protein per run of fermentation was approximately 180 mg. Polypeptide size was approximately 55 kDa from electrophoretic analysis, and S-NaR1 was mainly homo-tetrameric in its active form, as shown by gel filtration. S-NaR1 accepted electrons efficiently from reduced bromphenol blue (kcat = 2081 s(-1)) and less so from reduced methyl viologen (kcat = 159 s(-1)). The nitrate KM for S-NaR1 was 30 +/- 3 microM, which is very similar to YNaR1. S-NaR1 is capable of specific nitrate reduction, and direct electric current, as shown by catalytic nitrate reduction using protein film cyclic voltammetry, can drive this reaction. Thus, S-NaR1 is an ideal form of this enzyme for commercial applications, such as an enzymatic nitrate biosensor formulated with S-NaR1 interfaced to an electrode system.  相似文献   
64.
GlycoSuiteDB is an annotated and curated relational database of glycan structures reported in the literature. It contains information on the glycan type, core type, linkages and anomeric configurations, mass, composition and the analytical methods used by the researchers to determine the glycan structure. Native and recombinant sources are detailed, including species, tissue and/or cell type, cell line, strain, life stage, disease, and if known the protein to which the glycan structures are attached. There are links to SWISS-PROT/TrEMBL and PubMed where applicable. Recent developments include the implementation of searching by 2D structure and substructure, disease and reference. The database is updated twice a year, and now contains over 7650 entries. Access to GlycoSuiteDB is available at http://www.glycosuite.com.  相似文献   
65.
B cells recognize Ag through their surface IgRs and present it in the context of MHC class II molecules to CD4(+) T cells. Recent evidence indicates that B cells also present exogenous Ags in the context of MHC class I to CD8(+) T cells and thus may play an important role in the modulation of CTL responses. However, in this regard, conflicting reports are available. One group of studies suggests that the interaction between B cells and CD8(+) T cells leads to the activation of the T cells, whereas other studies propose that it induces T cell tolerance. For discerning this dichotomy, we used B cells that were activated with either LPS or anti-Ig plus anti-CD40 Ab, which mimic the T-independent and T-dependent modes of B cell activation, respectively, to provide accessory signals to resting CD8(+) T cells. Our results show that, in comparison with anti-Ig plus anti-CD40 Ab-activated B cells, the LPS-activated B cells (LPS-B) failed to induce significant levels of proliferation, cytokine secretion, and cytotoxic ability of CD8(+) T cells. This hyporesponsiveness of CD8(+) T cells activated with LPS-B was significantly rescued by anti-TGF-beta1 Ab. Moreover, it was found that such hyporesponsive CD8(+) T cells activated with LPS-B had entered a state of anergy. Furthermore, LPS-B expresses a significantly higher level of TGF-beta1 on the surface, which caused the observed hyporesponsiveness of CD8(+) T cells. Therefore, this study, for the first time, provides a novel mechanism of B cell surface TGF-beta1-mediated hyporesponsiveness leading to anergy of CD8(+) T cells.  相似文献   
66.
The stability and structure of protein-containing water-in-oil (w/o) microemulsions were investigated by using the large protein immunoglobulin G (IgG, MW 155,000) in a mixture comprised of brine, sulfosuccinic acid bis [2-ethylhexyl]ester (sodium salt), and isooctane. We explored factors affecting the initial uptake of IgG into the w/o microemulsion and its subsequent release to a solid (precipitate) phase, and the kinetics of the latter process. Influences of such parameters as pH, ionic strength, and protein concentration on the solubilization and precipitation of bovine IgG in the organic phase are described. The structure and dynamics in microemulsions containing bovine IgG were probed by using dynamic light scattering, and it was found that the presence of IgG in the microemulsion induced strong attractive forces between the droplets. Based on results obtained by using these various experimental approaches, a model for protein solubilization and release is proposed. In this model, we propose the formation of clusters within which bovine IgG resides and which substantially slow the kinetics of protein release from the droplets to the precipitate phase.  相似文献   
67.
We have previously discovered the opium alkaloid noscapine as a microtubule interacting agent that binds to tubulin, alters the dynamics of microtubule assembly, and arrests mammalian cells at mitosis (Ye, K., Ke, Y., Keshava, N., Shanks, J., Kapp, J. A., Tekmal, R. R., Petros, J., and Joshi, H. C. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 1601-1606; Ye, K., Zhou, J., Landen, J. W., Bradbury, E. M., and Joshi, H. C. (2001) J. Biol. Chem. 276, 46697-46700; Zhou, J., Panda, D., Landen, J. W., Wilson, L., and Joshi, H. C. (2002) J. Biol. Chem. 277, 17200-17208). Here we show that noscapine does not compete with paclitaxel for tubulin binding and can efficiently inhibit the proliferation of both paclitaxel-sensitive and paclitaxel-resistant human ovarian carcinoma cells (i.e. the parental cell line 1A9 and two derivative cell lines, 1A9PTX10 and 1A9PTX22, which harbor beta-tubulin mutations that impair paclitaxel-tubulin interaction (Giannakakou, P., Sackett, D. L., Kang, Y. K., Zhan, Z., Buters, J. T., Fojo, T., and Poruchynsky, M. S. (1997) J. Biol. Chem. 272, 17118-17125). Strikingly, these cells undergo apoptotic death upon noscapine treatment, accompanied by activation of the c-Jun NH(2)-terminal kinases (JNK). Furthermore, inhibition of JNK activity by treatment with antisense oligonucleotide or transfection with dominant-negative JNK blocks noscapine-induced apoptosis. These findings thus indicate a great potential for noscapine in the treatment of paclitaxel-resistant human cancers. In addition, our results suggest that the JNK pathway plays an essential role in microtubule inhibitor-induced apoptosis.  相似文献   
68.
Amoebocyte is the single type of cell circulating in the horseshoe crab hemolymph, which plays a major role in the defense system of the animal. Granules present in these cells are sensitive to nanogram quantities of bacterial endotoxins, which form the basis of the Limulus amoebocyte lysate (LAL) test. Normally, amoebocytes for the production of the LAL are collected by cardiac puncture; hence, development of the in vitro culture system for amoebocytes will reduce the variability of the lysate and help to conserve the 400 million-yr-old living fossil. In the present investigation we have attempted organ culture of gill flaps that have been shown to be the source of amoebocytes. The gill flaps were cultured at 28 degrees C on a rocker platform in a modified L-15 medium supplemented with 10% v/v horseshoe crab serum. This led to the release of amoebocytes outside the gill flaps for a period of 6-8 wk with a more or less steady number of amoebocytes during the weekly harvest. No significant difference was seen in the yield of amoebocytes from male and female horseshoe crabs. Confocal laser microscopy studies revealed significant difference in the size of amoebocytes released in vitro as compared with those obtained in vivo. Thus, we have optimized the culture conditions for the long-term generation of amoebocytes in vitro from the Indian horseshoe crab Tachypleus gigas by reducing the incidence of contamination, simulating in vivo conditions for the organ culture of gill flaps, and improvising the nutritional status using the modified L-15 medium, providing the desired osmolarity and pH.  相似文献   
69.
A decapeptide Boc-L-Ala-(Delta Delta Phe)(4)-L-Ala-(Delta Delta Phe)3-Gly-OMe (Peptide I) was synthesized to study the preferred screw sense of consecutive alpha,beta-dehydrophenylalanine (Delta Delta Phe) residues. Crystallographic and CD studies suggest that, despite the presence of two L-Ala residues in the sequence, the decapeptide does not have a preferred screw sense. The peptide crystallizes with two conformers per asymmetric unit, one of them a slightly distorted right-handed 3(10)-helix (X) and the other a left-handed 3(10)-helix (Y) with X and Y being antiparallel to each other. An unanticipated and interesting observation is that in the solid state, the two shape-complement molecules self-assemble and interact with an extensive network of C-H...O hydrogen bonds and pi-pi interactions, directed laterally to the helix axis with amazing regularity. Here, we present an atomic resolution picture of the weak interaction mediated mutual recognition of two secondary structural elements and its possible implication in understanding the specific folding of the hydrophobic core of globular proteins and exploitation in future work on de novo design.  相似文献   
70.
Structural and functional organization of the animal fatty acid synthase   总被引:23,自引:0,他引:23  
The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between and within subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号