首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1071篇
  免费   106篇
  国内免费   1篇
  2021年   12篇
  2019年   10篇
  2017年   8篇
  2016年   20篇
  2015年   31篇
  2014年   49篇
  2013年   43篇
  2012年   66篇
  2011年   52篇
  2010年   36篇
  2009年   36篇
  2008年   40篇
  2007年   55篇
  2006年   43篇
  2005年   44篇
  2004年   47篇
  2003年   41篇
  2002年   53篇
  2001年   34篇
  2000年   41篇
  1999年   38篇
  1998年   19篇
  1997年   7篇
  1996年   10篇
  1995年   13篇
  1994年   6篇
  1992年   21篇
  1991年   20篇
  1990年   14篇
  1989年   13篇
  1987年   9篇
  1986年   15篇
  1985年   9篇
  1984年   13篇
  1983年   11篇
  1982年   12篇
  1981年   10篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1975年   6篇
  1974年   9篇
  1973年   9篇
  1972年   8篇
  1971年   14篇
  1970年   13篇
  1969年   9篇
  1968年   5篇
  1965年   8篇
  1946年   5篇
排序方式: 共有1178条查询结果,搜索用时 31 毫秒
51.
52.
53.
54.
Dong  Haoru  Shu  Xinhua  Xu  Qiang  Zhu  Chen  Kaufmann  Andreas M.  Zheng  Zhi-Ming  Albers  Andreas E.  Qian  Xu 《中国病毒学》2021,36(6):1284-1302
Virologica Sinica - Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to...  相似文献   
55.

Background

Activation of the Wnt signalling cascade is primarily based on the interplay between Wnt ligands, their receptors and extracellular modulators. One prominent family of extracellular modulators is represented by the SFRP (secreted Frizzled-related protein) family. These proteins have significant similarity to the extracellular domain of Frizzled receptors, suggesting that they bind Wnt ligands and inhibit signalling. The SFRP-type protein Fz4-v1, a splice variant of the Frizzled-4 receptor found in humans and Xenopus, was shown to augment Wnt/β-catenin signalling, and also interacts with those Wnt ligands that act on β-catenin-independent Wnt pathways.

Findings

Here we show that Xenopus Fz4-v1 can activate and inhibit the β-catenin-dependent Wnt pathway. Gain-of-function experiments revealed that high Wnt/β-catenin activity is inhibited by low and high concentrations of Fz4-v1. In contrast, signals generated by low amounts of Wnt ligands were enhanced by low concentrations of Fz4-v1 but were repressed by high concentrations. This biphasic activity of Fz4-v1 was not observed in non-canonical Wnt signalling. Fz4-v1 enhanced β-catenin-independent Wnt signalling triggered by either low or high doses of Wnt11. Antisense morpholino-mediated knock-down experiments demonstrated that in early Xenopus embryos Fz4-v1 is required for the migration of cranial neural crest cells and for the development of the dorsal fin.

Conclusions

For the first time, we show that a splice variant of the Frizzled-4 receptor modulates Wnt signalling in a dose-dependent, biphasic manner. These results also demonstrate that the cystein-rich domain (CRD), which is shared by Fz4-v1 and SFRPs, is sufficient for the biphasic activity of these secreted Wnt modulators.
  相似文献   
56.
Electrospun nanofibres are an excellent cell culture substrate, enabling the fast and non‐disruptive harvest and transfer of adherent cells for microscopical and biochemical analyses. Metabolic activity and cellular structures are maintained during the only half a minute‐long harvest and transfer process. We show here that such samples can be optimally processed by means of cryofixation combined either with freeze‐substitution, sample rehydration and cryosection‐immunolabelling or with freeze‐fracture replica‐immunolabelling. Moreover, electrospun fibre substrates are equally suitable for complementary approaches, such as biochemistry, fluorescence microscopy and cytochemistry.  相似文献   
57.
Species previously unknown to science are continually discovered and some of these species already face extinction at the time of their discovery. Conserving new and rare species in these cases becomes a trial-and-error process and conservationists will attempt to manage them by using knowledge of closely related species, or those that fill the same ecological niche, and then adapting the management program as needed. Savannas Mint (Dicerandra immaculata Lakela var. savannarum Huck) is a perennial plant that was discovered in Florida scrub habitat at two locations in 1995, but is nearly extinct at these locations. We tested whether shade, leaf litter, propagation method, parent genotype, parent collection site, planting date, and absorbent granules influenced survival, reproduction, and recruitment of Savannas Mint in a population of 1,614 plants that we introduced between June 2006 and July 2009 into a state protected site. Survival and reproduction of introduced plants, and recruitment of new plants, was higher in microhabitats in full sun and no leaf litter and lower in partially shaded habitats. The two sites from which parent plants were collected differentially influenced survival and reproduction of introduced plants. These differences in survival and reproduction are likely due to underlying genetic differences. Differential survival of progeny from different parent genotypes further supports the idea that underlying genetics is an important consideration when restoring plant populations. The most successful progeny of parent genotypes had survival rates nearly 12 times higher than the least successful progeny. We speculate that many of these environmental and genetic factors are likely to influence allopatric congeners and other critically endangered gap specialists that grow in Florida scrub and our results can be used to guide their conservation.  相似文献   
58.
59.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
60.

Background/Objectives

Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) with contrast enhanced ultrasound (CEU) could assess treatment effects on endothelial phenotype in early atherosclerosis.

Methods

Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day). At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MBVCAM) and control microbubbles (MBCtr). Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression.

Results

Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MBVCAM in non-treated animals (MBVCAM 2±0.3 vs MBCtr 0.7±0.2, p<0.01), but not in statin-treated animals (MBVCAM 0.8±0.2 vs MBCtr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MBVCAM signal).

Conclusions

Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号