首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   104篇
  国内免费   1篇
  1159篇
  2021年   12篇
  2019年   10篇
  2017年   8篇
  2016年   19篇
  2015年   30篇
  2014年   48篇
  2013年   40篇
  2012年   66篇
  2011年   51篇
  2010年   33篇
  2009年   36篇
  2008年   39篇
  2007年   55篇
  2006年   42篇
  2005年   43篇
  2004年   47篇
  2003年   41篇
  2002年   53篇
  2001年   34篇
  2000年   41篇
  1999年   38篇
  1998年   16篇
  1997年   6篇
  1996年   10篇
  1995年   13篇
  1994年   6篇
  1992年   21篇
  1991年   20篇
  1990年   14篇
  1989年   13篇
  1987年   9篇
  1986年   15篇
  1985年   9篇
  1984年   13篇
  1983年   10篇
  1982年   12篇
  1981年   10篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1975年   5篇
  1974年   9篇
  1973年   9篇
  1972年   8篇
  1971年   14篇
  1970年   13篇
  1969年   9篇
  1968年   5篇
  1965年   8篇
  1946年   5篇
排序方式: 共有1159条查询结果,搜索用时 15 毫秒
991.
992.
A few years ago, A. gossypii became recognized as an attractive model to study the growth of long and multinucleated fungal cells (hyphae) because of its small genome, haploid nuclei, and efficient gene targeting methods. It is generally assumed that a better understanding of filamentous fungal growth will greatly stimulate the development of novel fungicides. The use of Ashbya gossypii as a model is particularly promising because of the high level of gene order conservation (synteny) between the genomes of A. gossypii and the yeast Saccharomyces cerevisiae. Thus, a similar set of genes seems to control the surprisingly different growth modes of these two organisms, which predicts that orthologous growth control genes might not play identical cellular roles in both systems. Analyzing the phenotypes of A. gossypii mutants lacking factors with known functions in yeast morphogenesis and nuclear dynamics confirm this hypothesis. Comparative genomics of both organisms also reveals rare examples of differences in the gene sets for some cellular processes, which as shown for phosphate homeostasis can be associated with differences in control levels.  相似文献   
993.
994.
Coupling of human circadian and cell cycles by the timeless protein   总被引:9,自引:0,他引:9       下载免费PDF全文
The Timeless protein is essential for circadian rhythm in Drosophila. The Timeless orthologue in mice is essential for viability and appears to be required for the maintenance of a robust circadian rhythm as well. We have found that the human Timeless protein interacts with both the circadian clock protein cryptochrome 2 and with the cell cycle checkpoint proteins Chk1 and the ATR-ATRIP complex and plays an important role in the DNA damage checkpoint response. Down-regulation of Timeless in human cells seriously compromises replication and intra-S checkpoints, indicating an intimate connection between the circadian cycle and the DNA damage checkpoints that is in part mediated by the Timeless protein.  相似文献   
995.
Rapid removal of pathogens from the circulation by secondary lymphoid organs is prerequisite for successful control of infection. Blood-borne Ags are trapped mainly in the splenic marginal zone. To identify the cell populations responsible for Ag trapping in the marginal zone, mice were selectively depleted of marginal zone macrophages and marginal metallophilic macrophages. In the absence of these cells, trapping of microspheres and Listeria monocytogenes organisms was lost, and early control of infection was impaired. Depletion of marginal zone macrophages and marginal metallophilic macrophages, however, did not limit Ag presentation because Listeria-specific protective T cell immunity was induced. Therefore, marginal zone macrophages and marginal metallophilic macrophages are crucial for trapping of particulate Ag but dispensable for Ag presentation.  相似文献   
996.
Challenge with low doses of LPS together with D-galactosamine causes severe liver injury, resulting in lethal shock (low dose LPS-induced shock). We examined the role of LFA-1 in low dose LPS-induced shock. LFA-1(-/-) mice were more resistant to low dose LPS-induced shock/liver injury than their heterozygous littermates, although serum levels of TNF-alpha and IL-12 were higher in these mice. C57BL/6 mice were not rescued from lethal effects of LPS by depletion of NK1(+) cells, granulocytes, or macrophages, and susceptibility of NKT cell-deficient mice was comparable to that of controls. High numbers of platelets were detected in the liver of LFA-1(+/-) mice after low dose LPS challenge, whereas liver accumulation of platelets was only marginal in LFA-1(-/-) mice. Following low dose LPS challenge, serum levels of IL-10 were higher in LFA-1(-/-) mice than in LFA-1(+/-) mice, and susceptibility to low dose LPS-induced shock as well as platelet accumulation in the liver of LFA-1(-/-) mice were markedly increased by IL-10 neutralization. Serum levels of IL-10 in LFA-1(+/-) mice were only marginally affected by macrophage depletion. However, in LFA-1(-/-) mice macrophage depletion markedly reduced serum levels of IL-10, and as a corollary, susceptibility of LFA-1(-/-) mice to low dose LPS-induced shock was markedly elevated despite the fact that TNF-alpha levels were also diminished. We conclude that LFA-1 participates in LPS-induced lethal shock/liver injury by regulating IL-10 secretion from macrophages and that IL-10 plays a decisive role in resistance to shock/liver injury. Our data point to a novel role of LFA-1 in control of the proinflammatory/anti-inflammatory cytokine network.  相似文献   
997.
It is assumed that the survival factors Bcl-2 and Bcl-x(L) are mainly functional on mitochondria and therefore must contain mitochondrial targeting sequences. Here we show, however, that only Bcl-x(L) is specifically targeted to the mitochondrial outer membrane (MOM) whereas Bcl-2 distributes on several intracellular membranes. Mitochondrial targeting of Bcl-x(L) requires the COOH-terminal transmembrane (TM) domain flanked at both ends by at least two basic amino acids. This sequence is a bona fide targeting signal for the MOM as it confers specific mitochondrial localization to soluble EGFP. The signal is present in numerous proteins known to be directed to the MOM. Bcl-2 lacks the signal and therefore localizes to several intracellular membranes. The COOH-terminal region of Bcl-2 can be converted into a targeting signal for the MOM by increasing the basicity surrounding its TM. These data define a new targeting sequence for the MOM and propose that Bcl-2 acts on several intracellular membranes whereas Bcl-x(L) specifically functions on the MOM.  相似文献   
998.
Squalestatin1 (SQ1), a potent inhibitor of squalene synthase produced a dose-dependent induction of cytochromes P450 CYP2H1 and CYP3A37 mRNAs in chicken hepatoma cells. The effect of SQ1 was completely reversed by 25-hydroxycholesterol. Bile acids elicited an induction of CYP3A37 and CYP2H1 mRNA. Bile acids also reduced the phenobarbital induction of CYP2H1 but not of CYP3A37 mRNA. The effects of SQ1 and its reversal by 25-hydroxycholesterol and the effects of bile acids were reproduced in reporter gene assays with a phenobarbital-responsive enhancer unit of CYP2H1. These data suggest that an endogenous molecule related to cholesterol homeostasis regulates induction of drug-inducible CYPs.  相似文献   
999.
Targeted correction of a single base in a gene of an eucaryotic cell by specific oligonucleotides is a yet controversial technique. Here, we introduce the correction of point mutations in the hypoxanthine-guanine-phosphoribosyl-transferase (HPRT) gene as an additional model system to test targeted gene correction. In human, Hprt mutations cause Lesch-Nyhan syndrome. Using hamster V79 cells, we generated three cell lines with one hprt point mutation each. These cell lines were treated with specific single-stranded 45 base phosphothioate modified oligonucleotides and selected by HAT medium. The surviving clones were investigated for the correction of the respective hprt mutation. Treatment with the oligonucleotides was successful in repairing all three hprt mutations (hprt cDNA position 74, C --> T; position 151, C --> T; and position 400, G --> A). The correction efficiency was very low but reproducible. We suggest that this system allows one to investigate targeted gene correction in dependence on the target sequence and the oligonucleotides used.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号